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Abstract
Structural identification has received increased attention over recent years for performance-based structural assessment
and health monitoring. Recently, an approach for formulating the finite element model updating problem as a Constraint
Satisfaction Problem has been developed. In contrast to widely used probabilistic model updating through Bayesian
inference methods, the technique naturally accounts for measurement and modeling errors through the use of interval
arithmetic to determine the set of all feasible solutions to the partially described and incompletely measured inverse
eigenvalue problem. This paper presents extensions of the constraint satisfaction approach permitting the application to
larger multiple degree-of-freedom system models. To accommodate for the drastic increase in the dimensionality of the
inverse problem, the extended methodology replaces computation of the complete set of solutions with an approach that
contracts the initial search space to the interval hull, which encompasses the complete set of feasible solutions with a
single interval vector solution. The capabilities are demonstrated using vibration data acquired through hybrid simulation
of a forty-five degree-of-freedom planar truss, where a two-bar specimen with bolted connections representing a single
member of the truss serves as the experimental substructure. Structural identification is performed using data acquired
with the undamaged experimental member as well as over a number of damage scenarios with progressively increased
severity developed by exceeding a limit state capacity of the member. Interval hull solutions obtained through application
of the nonlinear constraint satisfaction methodology demonstrate the capability to correctly identify and quantify the
extent of the damage in the truss while incorporating measurement uncertainties in the parameter identification.
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Introduction

In recent years, numerous methods have emerged for
the updating of structural matrices using vibration
data obtained from experimental and operational
modal analyses. These updated stiffness and mass
matrices have in turn been proposed for inferring
properties of in-service structures and predicting
behavior and performance to aid in decision making.
Despite successful demonstrations of finite element
model updating on full-scale structures, there are
several persistent challenges. The primary challenge
is that model updating is an inverse problem
that is greatly affected by numerous sources of
uncertainty including: the selection of uncertain
parameters, modeling assumptions, and measurement
uncertainties1. In addition to being an inverse problem,
the finite element updating problem is typically partially
described, wherein only a subset of the natural
frequencies of the model are measurable given the
bandwidth limitations of transducers2. Similarly, from
a practical standpoint, it is impossible to measure
every degree of freedom represented in the analytical
model, so the experimentally derived mode shapes
are also inherently incomplete. Understanding how the

effect of the limited measurements and measurement
uncertainties propagate into the identified parameter
space to quantify the confidence in the results is
paramount for decision making purposes, especially
when the application relates to vibration-based damage
detection.

In the past decade, the predominant approach
for model updating in the presence of uncertainties
is a class of methods referred to as probabilistic
model updating3. Probabilistic model updating employs
statistical methods to provide a family of potential
structural models4, instead of determining a single best
deterministic solution, that incorporate measurement
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uncertainties in the posterior distributions of the model
parameters. However, these methods require assumed
probability density functions, a likelihood function with
associated weighting coefficients to express relative
importance of the natural frequency and mode shapes
residuals, and rely heavily on the stochastic simulation
method chosen5,6. In addition, probabilistic methods
can be computationally expensive, often requiring tens
of thousands of simulations5, even when the number
of uncertain parameters is relatively small7. In general,
probabilistic model updating presents several challenges
including: the results remaining highly dependent on
the initial finite element model and the selection of
uncertain parameters included in the updating7, direct
matching of modes is often required8, and the weights
assigned to residuals in the objective function greatly
affect the solution space7,9.

There have been numerous applications of prob-
abilistic model updating for vibration-based damage
detection7,10–17, which have underlined the importance
of addressing remaining challenges for practical appli-
cation. An early study on probabilistic model updating
determined that some identified parameter sets, while
providing strong correlations with the experimental
modal parameter estimates, may erroneously locate
and quantify damage in the presence of measurement
and modeling errors10. The identifiability of damage
is dictated by several factors including: the number
and location of measurement sensors deployed during
the vibration test and the quality of the measurement
data. The first factor determines whether the problem
is identifiable or unidentifiable, which is dependent on
there being more unique modal measurements than
the number of uncertain parameters in the model14.
However, it has also been shown that employing more
modes in the identification does not guarantee bet-
ter damage identification results18. Mustafa and Mat-
sumoto16 explored practical application of Bayesian
model updating for detection of simulated damage
of a single diagonal member of a truss bridge and
indicated that identification of local damage was not
possible using only global modes. In addition, the
authors indicated that detection of local damage may
only be possible if the modal properties utilized in the
finite element model updating scheme are significantly
affected by the damage. Huang et al.15 outlined several
uncertainties associated with vibration-based Bayesian
model updating and how those uncertainties affect the
ability to successfully identify damage. The authors
stated that quality of the measured data has the
largest effect on the ability to identify damage and
demonstrated that successful identification of low level
damage may not be possible even if the measurement
noise is low. Utilization of damage identification results
in such cases may lead to incorrect conclusions regarding
the early onset or absence of damage. Likewise, high
levels of measurement noise preclude successful damage
detection. Consequently, it was stated that an appro-
priate threshold must be chosen to distinguish damaged
elements from undamaged elements, which itself is a
practical challenge. Setting the threshold low, which

increases the detection of damaged elements, may falsely
identify undamaged elements as damaged. Conversely,
if the damage threshold is set too high, there is a high
probability of missing actual damage. In addition, since
the sensitivity of the modal parameters estimates to
the individual uncertain parameters in the model to
be updated may vary significantly, the threshold for
damage detection may also need to vary for individual
structural members.

Recently, alternatives to probabilistic model updating
have been introduced that also offer the capability to
account for measurement uncertainties are based on
interval methods19. Interval analysis techniques have
an advantage over probabilistic methods in that they
do not require assumptions regarding the probability
density functions of uncertain parameters and are
capable of completely exploring the feasible parameter
space without using discrete sampling techniques or
a modal measure of fit function. Gabriele et al.20

presented one of the first studies employing interval
analysis to place bounds on uncertain parameters,
measurements, and modeling errors. The authors of that
study utilized the inclusion property of interval analysis
to place bounds on uncertain model parameters for
damage identification. Wang et al.21 employed interval
analysis for damage detection using a membership-
set identification method. The two-step sensitivity-
based interval model updating technique employed
in that study used static displacement measurements
across different load cases to identify uncertain stiffness
parameters. The intersection of the updated interval
stiffness parameter vectors for each load case resulted
in tight bounds on the stiffness parameter estimates.
In a subsequent study22, measured natural frequencies
as well as uncertain acceleration responses were
employed for damage detection using the same two-step
interval finite element model updating approach with
membership-set identification. It was concluded that
utilizing more than a single type of measured data (i.e.
just static displacements) resulted in higher accuracy
of damage identification. Khodaparast et al.23 explored
the use of a meta-model using the Kriging predictor for
model updating, which was implemented successfully
for interval model updating of a three degree-of-
freedom mass-spring system. However, although the
approach presented utilizes interval model updating,
the approach addresses the field of stochastic model
updating, where multiple sets of data from nominally
identical structures are employed for identification of
parameter variability, instead of identifying uncertain
parameters for a single structure. Fang et al.24 also
presented a stochastic model updating method, which
adopted the use of measured eigenvalues as well as
eigenvectors. The authors of that study indicated that
the proposed interval response surface method (IRSM)
provided higher precision than the Kriging predictor
and that it was more computationally efficient given
that interval arithmetic operations are easily performed
on the response surface model. Gabriele and Valente25

prescribed modal properties as intervals and model
updating was performed using branch and bound
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processes until the prescribed modal intervals were
encompassed by the modal properties of the interval
FE model. In an extension of that work, the authors
introduced mode shapes within the model correlation
through the use of the Modal Assurance Criterion
(MAC)26. The exploration of the parameter space was
again based on branch and bound techniques, although
the authors concluded that the convergence was slow
compared to sensitivity-based optimization techniques
and the application was limited to a small numerical
beam model.

A recent effort has been made to combine both
probabilistic and interval methods for damage detection
using a modified Metropolis-Hastings algorithm with
interval measurements17. In that study, intervals are
created around the parameters sampled by the MH
algorithm and then two separate finite element analyses
are performed using the lower and upper bounds for
the parameters to obtain the lower and upper bounds
for the dynamic response of the model. In the process,
the Markov chain only moves to a new position if the
intersection of the response bounds calculated from the
finite element models with the interval measurements is
non-empty. Although the method was shown to reduce
the computational burden of both the probabilistic and
interval-based methods, it still required over 10,000
finite element analysis runs.

The updating procedure in the majority of the
existing probabilistic and interval-based model updating
techniques relies on global optimization of an objective
function that is an amalgamation of natural frequency
and mode shape residuals across a number of measured
modes and does not guarantee that the modal properties
of the updated model are contained within the
uncertainty bounds of the experimental measurements.
To address this shortcoming, model updating has
recently been cast as a constraint satisfaction problem
with interval arithmetic and contractor programming
to provide the ability to efficiently characterize the
set of all feasible solutions to a structured inverse
eigenvalue problem and the capability to solve under-
determined and non-unique problems in the presence
of measurement uncertainties27. In addition to full
exploration of the parameter space, the method does
not require weighting of correlation residuals, which
can have drastic effects on the identification. To
date, the method has been numerically verified and
experimentally validated using a six degree-of-freedom
laboratory shear building model.

This paper introduces adaptations to the aforemen-
tioned approach to finite element model updating with
interval arithmetic and contractor programming that
are necessary to permit the application of the method-
ology to larger multiple degree-of-freedom (MDOF)
system models with larger sets of uncertain parameters.
The extension of the methodology produces interval
estimates for the uncertain parameters in the form
of an interval hull that is guaranteed to enclose the
set of all feasible solutions to the structured inverse
eigenvalue problem with partially described and incom-
pletely measured eigeninformation pairs corrupted by

measurement noise and uncertainty. The methodology
is demonstrated for structural identification of a truss
using experimental data obtained through hybrid test-
ing. The experiments are then extended to several cases
of progressive damage severity at a bolted connection to
demonstrate the capability of the method to correctly
identify the onset, location, and severity of damage in
the presence of measurement uncertainties.

Finite Element Model Updating Using
Nonlinear Constraint Satisfaction

In this section, the methodology developed by the
authors for structural identification using nonlinear
constraint satisfaction in Kernicky et al.27 is briefly
reviewed and then extensions of the methodology are
introduced to facilitate the application to larger multiple
degree of freedom system models.

The finite element model updating problem is most
commonly applied to multiple degree of freedom system
models using the undamped natural frequencies and
mode shapes. The generalized eigenvalue problem for
undamped linear systems is

KΦ−MΦΩ = 0 (1)

where M and K are the mass and stiffness matrices,
Ω is the diagonal matrix of eigenvalues (ω2

n, where ωn
are the undamped natural frequencies), and Φ are the
corresponding eigenvectors, or mode shapes, represented
as columns of the matrix. The ultimate goal of the
finite element model updating problem is to solve for
a set of parameters within M and K, which are n× n
square matrices, given a set of estimated eigenvalues
and eigenvectors obtained through physical testing of
the structure. However, most cases of model updating
are partially described where only m < n eigenpairs
are measured due to bandwidth limitations of the
sensing equipment and practical limitations within the
system identification of the modal parameters from the
vibration test data. In addition, only s < n degrees
of freedom of the corresponding numerical model are
typically measured in the physical testing, leading to
incompletely measured mode shapes. In the context
of this partially described eigenvalue problem with
incompletely measured modes, the matrix equation can
be partitioned as:

Kn×n

[
ΦMs×m

ΦU(n−s)×m

]
−Mn×n

[
ΦMs×m

ΦU(n−s)×m

]
Ωm×m = 0n×m

(2)
where ΦMs×m are the rows of the measured components
of the m measured mode shapes and ΦU(n−s)×m are the
rows of the unmeasured components of the same m
measured mode shapes. In this study, the structural
matrices are explicitly formed through elemental
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contributions as:Ko +

NK∑
j=1

αjKj

[ ΦMs×m
ΦU(n−s)×m

]

−Mn×n

[
ΦMs×m

ΦU(n−s)×m

]
Ωm×m = 0n×m (3)

where αj is a scalar multiplier applied to a basis matrix,
Kj , that provides the stiffness contributions of the
j-th member of the model, while Ko represents the
contributions of any members in the model not subject
to updating. In such a formulation, the unknowns in the
inverse eigenvalue problem are the NK scalar multipliers
for the member stiffness contributions subject to
updating and the (n− s)×m unmeasured components
of the eigenvectors. Employing interval arithmetic, the
constructed stiffness matrix can be developed as an
interval matrix,KI , where the uncertain stiffness scalars
in the model are encoded as intervals

α = [α, α] (4)

where α is the lower bound to the interval for
the uncertain parameter and α is the upper bound.
Likewise, the unknown eigenvector components are
treated as intervals

ΦU(n−s)×m = [ΦU(n−s)×m,Φ
U

(n−s)×m] (5)

In this formulation, intervals are also employed to
account for measurement uncertainties by relaxing the
measured modal parameters from crisp scalars to inter-
vals centered around the experimental measurements.
To do this, each partially described eigenvector, φMr , is
first scaled to unity maximum amplitude and then an
interval is developed around all components except the
one with maximum amplitude as:

φI,Mi,r = [φ
i,r
, φi,r] ={

[φMi,r − χi,r, φMi,r + χi,r] if φMi,r 6= 1

[1, 1] if φMi,r = 1
(6)

where χi,r is a specified radius for the intervals.
The reason why the component with the maximum
amplitude is not relaxed is to establish that component
as a reference since the amplitude of an eigenvector
is not unique. In a similar manner, the experimentally
measured eigenvalues can be prescribed as intervals:

ωIr = [ωr, ωr] (7)

to reflect uncertainty in the experimental estimates of
the natural frequencies. Relaxation of the experimental
estimates to account for measurement and modeling
uncertainties allows for Equation 3 to create a set of
n×m constraint equations.

The extent of the relaxation dictates the satisfiability
of the constraint equations. If the radius of the
intervals is too narrowly prescribed in the presence
of measurement and modeling uncertainties, then
satisfiability of the constraints will not be met and no

solution will be present. Conversely, if the radius is too
wide, then the solution space may simply encompass
the initial ranges of the uncertain variables. Choosing
the extent of relaxation may either be performed
iteratively based on the solvability of the constraints
or may be determined by a measure of uncertainty in
the modal parameter estimates. For the latter case,
when multiple sets of modal parameter estimates are
available, the radius of relaxation, χ, may be represented
by the standard deviation from the mean of each modal
parameter estimate, σ.

In the original formulation of this methodology27, an
additional constraint termed the eigenvalue inclusion
constraint was introduced to ensure that the prescribed
eigenvalues are contained within the interval eigenvalues
of the identified interval stiffness and mass matrices,
which cannot be ensured solely by the constraint
equations in Equation 3. For small system models,
the inclusion test can be implemented by substituting
each of the measured eigenvalues into the characteristic
equation formed from the determinant:

∣∣KI − (ωIr )2M
∣∣ =

∣∣∣∣Ko +
NK∑
j=1

[αj , αj ]Kj − (ωIr )2M

∣∣∣∣ = 0

(8)

Constraint Satisfaction with Interval Arithmetic

A fundamental difference between the developed
methodology and most existing approaches for model
updating is that, instead of casting the problem as
an optimization problem using an objective function
or modal measure of fit function, the approach
solves for the complete feasible parameter space that
satisfies the constraints formed through Equations 3
and 8. Formally, a constraint satisfaction problem
aims to determine all possible solutions for a set
of variables, V , in a prescribed domain, D, over a
set of constraints, C, through systematic search and
constraint propagation28. Systematic search may be
viewed as a branch and bound approach explored
as a tree structure, where the root node represents
the entire problem. Subsequent nodes of the tree
represent subproblems of the root node, which differ
in variable assignment. If during evaluation of a node
it is determined that there is constraint violation,
backtracking is performed to find a new satisfiable
assignment and the subtree below the failed node is
pruned from the search space. In this way, systematic
search improves on the brute force method of trying
all possible variable combinations. However, simple
backtracking is an “uninformed” approach and is not
effective for problems with significant dimensionality.
One of the main challenges associated with solving
a CSP is improving the performance of the search
methods such that local inconsistencies are eliminated.
Local inconsistencies are potential partial solutions that
satisfy the constraints, but cannot be extended by
choosing values for some of the uninstantiated variables.
In other words, selecting a value for a uninstantiated
variable would cause failure of the node. One method
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Figure 1. An interval vector, or box, generated from the
product of three intervals

to enforce local consistency is arc consistency, which
provides a swift method for constraint propagation29

that discards values, or combinations of values, if their
assignment violates some set of constraints. Eliminating
erroneous assignments reduces the size of the search
space to be explored by propagating the implications
of a constraint on one variable onto the other variables.
Combining the processes of systematic search and arc
consistency is called Constraint Programming28,30,31.

Interval arithmetic may be incorporated into
constraint programming so that variables and the
relationships among them in the constraint equations
are defined as intervals32, which provides a natural
way to place bounds on numerical rounding errors
and measurement uncertainties. Parameters defined as
intervals instead of crisp scalars are able to assume any
value within the interval. An interval [x] is a subset
of the real numbers, R, that can be represented using
a pair of real numbers [x, x] to denote the interval
x ≤ x ≤ x. If the endpoints, x and x, of an interval
are equal, the interval is known as degenerate and may
be represented as a single real number. The Cartesian
product of intervals creates an n-dimensional box, or
interval vector, that belongs to the set IRn . This
product is defined as

[x] = [x1]× [x2]× · · · × [xn] (9)

and is illustrated graphically in Figure 1 for the product
of three intervals.

The objective of the interval constraint programming
problem is now to identify all interval vector solutions
that satisfy the set of constraint equations within the
bounded domains for each set of interval variables. Note
that in dealing with continuous domains, arc consistency
cannot be held due to limitations on machine precision
so hull consistency33 is introduced. Hull consistency
may be viewed as a coarse extension of arc consistency
that requires arc consistency to only be satisfied at the
lower and upper bounds of the interval variable domains.
A constraint is hull consistent with respect to a box if,
for each bound of the domain of an interval variable,

there is a real valued combination of variables satisfying
the constraint.

Contractor Programming

A programming method that integrates interval analysis
and constraint programming, termed Contractor
Programming34, has recently been developed to
address interval constraint programming problems.
Contractors are powerful mathematical operators that
take an n-dimensional box as an input and contract the
domain according to a set of constraints. The formal
definition of a contractor and its properties are defined
as follows35:

A contractor (C) is a function from C : IRn → IRn,
where IR is interval over reals, with the following
properties:

• ∀[x] ∈ IRn C([x]) ⊂ [x]; where C([x]) repre-
sents box [x] after contraction

• C([x])∩ System= [x]∩System

The first property guarantees that the algorithm is
sound in that the contracted box is a subset of
the original, while the second property states that
no potential solution is lost after the contraction is
performed. Following contraction, the interval vector
can be bisected into a subset of smaller boxes and the
contractors can be applied to further characterize the
solution space.

For the current study, the authors have developed
an interface between the MATLAB interactive environ-
ment36 and the IBEX 2.1.17 C++ library37 to construct
and parameterize the structural stiffness and mass
matrices, develop mechanics-based constraint equations,
pass the formulated CSP to the IBEX solver, and parse
the interval vector solutions generated by the contrac-
tion algorithm for subsequent analysis. In the following
subsection, motivation for casting the updating problem
as one of constraint satisfaction is developed though
a simple illustrative example. Then, issues with the
scalability of the original formulation are addressed
through a novel extension of the methodology suitable
for application to larger MDOF system models. Finally,
application of the methodology to a 45 degree-of-
freedom truss model with experimental hybrid testing
data is presented to demonstrate its capabilities for
vibration-based damage detection.

Illustrative Example on a 3DOF Shear Building
Model

As motivation for the methodology presented in this
paper, consider the small three degree-of-freedom shear
building model with accompanying structural matrices
presented in Figure 2. For the baseline model, the
stiffnesses were assigned as k1 = k2 = k3 = 1. The
sparsity structure of the elemental contributions to
the stiffness matrix from each linear elastic spring
are explicitly defined in the structured matrices and
constraint equations for the dynamic properties of the
structure can be developed using Equations 3 and 8.
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Figure 2. Three degree-of-freedom mass-spring model used to
demonstrate structural identification using nonlinear
constraint satisfaction with interval arithmetic and contractor
programming

To add uncertainty to the measurements, 15
sets of synthetic modal parameter estimates with a
standard deviation of 0.01 were generated around
the natural frequencies and mode shapes derived
from the baseline model. Constraint equations were
developed with the means and standard deviations
of the synthetic measurement data used to prescribe
uncertainty in the constraint equations. Similar to the
six degree-of-freedom illustration presented in Kernicky
et al.27, a case with partially described eigenvalues and
incompletely measured mode shapes was explored by
limiting the eigeninformation to the first two modes
of the structure and mode shape measurement to only
degrees of freedom u2 and u3. The search space for the
three unknown stiffness parameters was bounded to ki ∈
[0, 3], while the search space for the unmeasured mode
shape components was bounded to φi,j ∈ [−10, 10]. For
this example, an interval precision of 0.01 for the
uncertain stiffness assignments and the unmeasured
mode shape components was assigned as stopping
criteria for the solver. The measurement uncertainty
applied to the natural frequencies and measured mode
shape components was prescribed as ± 1

4σ. Figure 3
displays the fully characterized subpaving of the space as
mapped by the IBEX nonlinear constraint satisfaction
solver, which identified 2492 feasible interval solutions
in two distinct basins in about 5 seconds. It should
be noted that all of the solutions found are correct
solutions to the inverse eigenvalue problem subject to
the partially described, incompletely measured, and
noisy eigeninformation. This is illustrated in Figure
3, which presents the natural frequencies and mode
shapes associated with a representative feasible solution
taken from each basin. Both representative feasible
solutions correctly reproduce the limited measurements,
consisting of the first two natural frequencies and the
corresponding mode shapes measured at only the second
and third elevations of the structure. Naturally, there
are significant differences in the unmeasured modal
parameters and it would be difficult to determine which
solution is more appropriate and, correspondingly,
whether damage is present in the structure. For
example, while it can be confidently stated that no
significant damage is present in k3, the same confidence
cannot be placed on k1 and k2 given the uncertainty
associated with each parameter. As a consequence of

the effect of the limited and uncertain measurement
data on the identified parameters, methods for
vibration-based damage detection need to not only be
capable of providing parameter estimates for damage
identification, but also provide information on the
confidence that may be placed on the identification
given the partially described, incomplete, and uncertain
measurement data provided.

Issues with Scalability

This approach for fully characterizing the feasible
solution space becomes computationally intractable
when the dimensionality of the parameter space is
significantly increased. Specifically, the boxes of the
subpaving tend to accumulate on the boundary due
to the amount of bisections required to reach the
requested interval precision38. Furthermore, the use
of the characteristic equation formed through the
determinant for the eigenvalue inclusion constraint
(Equation 8) does not scale to matrices of higher order.
This paper contributes two modifications to the original
methodology, described in the following subsections,
that permit the approach to be extended to larger
multiple degree-of-freedom system models.

Subpavings vs. Interval Hull To overcome the issue
associated with the computational intractability of
subpaving nonlinear problems of large dimensionality,
an alternative to subpaving the feasible solution space
through bisection and contraction is introduced. Instead
of subpaving, a single interval vector solution, [X], called
the interval hull can be computed, which is a pessimistic
enclosure that is guaranteed to contain the exact feasible
solution, X38. The open-source IBEX C++ library37

provides the ability to contract a box to the interval hull,
that is the smallest box enclosing all feasible solutions,
with respect to a system of linear inequalities. For
problems where the constraint equations are necessarily
nonlinear, which is the case for the inverse eigenvalue
problem with incomplete mode shape measurement, a
means of approximately linearizing the system needs
to be provided. In this study, the combined relaxation
procedure packaged within the IBEX library that
combines a corner-based Taylor relaxation39 and an
affine arithmetic-based relaxation40 is utilized. The
contractor employed is a composition of the forward-
backward contraction through the HC4 algorithm33,
adaptive constructive interval disjunction41, and the
interval hull contractor, CtcPolytopeHull, which calls the
linear solver compiled with IBEX (SoPlex42 in this case)
and calculates lower and upper bounds for each variable:

min
Ax≤b∧x∈[x]

{xi} and max
Ax≤b∧x∈[x]

{xi} (10)

The relaxed system is then re-evaluated over the
reduced domain and further contracted recursively until
a prescribed stopping criterion is reached. The criterion
chosen in this study is based on the perimeter of the
interval vector that defines the interval hull, which is
simply the sum of the widths of each interval solution
to the uncertain parameters.
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Figure 3. Subpavings of the feasible parameter space for the inverse eigenvalue problem subject to partially described,
incomplete, and uncertain modal parameters of the three degree-of-freedom system (synthetic measurements of natural
frequencies and mode shape coordinates highlighted in bold)

Figure 4 presents the application of the interval
hull to enclose the feasible parameter space for the
previously described three degree-of-freedom system
model with partially described, incompletely measured,
and uncertain modal parameter estimates. Comparisons
of the interval hull to the subpavings that fully
characterize the feasible parameter space reveal that
the interval hull provides a complete, although slightly
pessimistic, enclosure of the solution basins. In this
case, which produced multiple solutions due to the
limited data provided, the knowledge of two distinct
basins is lost in the interval hull solution. However,
the widths of the interval solutions to the uncertain
parameters developed through the interval hull still
reflect the relative confidence in the estimates of the
uncertain parameters, which is sufficient for informing
reliable damage detection. For instance, in this case the
interval hull contains the expected solution k1 = k2 =
k3 = 1 so the solution correctly does not suggest damage
in any of the stiffnesses. In terms of computational
performance, the interval hull was returned in less
than a second of computational time for this problem,
which is significantly more efficient than the approach
of subpaving.

Eigenvalue Inclusion Constraint Since the use of the
determinant does not scale to structural systems with
larger matrices, an alternative eigenvalue inclusion
constraint is developed by leveraging the response
surface methodology (RSM) to create a surrogate
model for estimating the interval natural frequencies
associated with the interval stiffness and mass
matrices of the system model. The RSM has
been frequently utilized in prior deterministic and
probabilistic model updating studies to replace finite
element models with approximations that are generally
more computationally efficient for estimating the modal
properties of parameterized models than eigenvalue
decomposition5,43. Response surface methodology is a
mathematical technique used to establish a relationship
between responses, y, and associated inputs, x. This
relation can be approximated using a polynomial model:

yi = g(x1, x2, ..., xk)β + ε (11)

where g(~x) is a vector consisting of powers and
cross-products of unknown input variables, β is a

vector of regression coefficients obtained through the
response surface mapping, and ε is the residual error
in the estimate. Typically, either linear or quadratic
polynomials are chosen to approximate the relationship
between inputs and outputs and interaction terms
may be additionally included in these models. For
the interested reader, further information about the
foundations of response surface methodology can be
found in Box and Draper44.

In the context of this paper, a response surface is
generated from a large set of structural parameters
(inputs) and their corresponding responses in the
finite element model (output), usually calculated for
model updating as the difference between analytical
and measured natural frequencies43, from which an
approximation model is generated by regression. The
application of the RSM in this study is used to develop
a relationship between the uncertain member stiffnesses,
α, and the corresponding residual error in the natural
frequencies of the parameterized model, ωr − ωexpr . This
equation is represented as,

ωr − ωexpr = g(α1, α2, ..., αk)β ∈ [−ε, ε] (12)

In this study, a set of 1000 unique scalar combinations
of member stiffnesses are generated via Latin Hypercube
Sampling to ensure an evenly sampled search space
and subsequently mapped to a set of outputs in
the form of the difference between the natural
frequency of the system model and the average
measured natural frequency. Multilinear regression
is then performed on the set of stiffness scalar
combinations and frequency differences to fit a response
surface using a quadratic model with interaction terms
using the MATLAB Statistics and Machine Learning
Toolbox. The regression coefficients and the root-mean-
squared-error (RMSE) are extracted to reformulate the
eigenvalue inclusion constraint equations from Equation
8 as:

ωr − ωexpr = g(α1, α2, ..., αk)β ∈ [−σr, σr]
+ [−1.96RMSEr, 1.96RMSEr] (13)

where [−1.96RMSEr, 1.96RMSEr] and [−σr, σr] are
the 95% confidence interval for the response surface
estimate and the standard deviation from the mean
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Figure 4. Illustration of the use of the interval hull to enclose the feasible parameter space as an alternative to subpavings

for the r-th natural frequency, respectively. The 95%
confidence interval for the response surface estimate is
introduced as a relaxation of the constraint equation to
account for the potential error introduced by using the
response surface as a surrogate for the exact eigenvalue
decomposition of the system model.

Details of Experimental Program for
Validation of the Methodology

Recently, hybrid simulation has been explored as an
alternative to full-scale vibration testing for structural
health monitoring and damage detection45. Hybrid
testing provides the benefit of limiting the physical
testing to only a portion of the structure, while the
remainder is strictly numerical and interacts with the
experimental member through a substructured form
of the dynamic equation of motion. The interaction
between the experimental and analytical substructures
is illustrated schematically in Figure 5a. This type of
testing alleviates the costs associated with full-scale
vibration-based damage detection experimentation and,
unlike field experimentation where damage is often
necessarily simulated through saw cuts or bolt removal,
provides a means for faithfully replicating the influence
of limit state damage on the dynamic response of
the structure. Modeling uncertainties and discretization
errors are also alleviated when using hybrid simulation.
Consequently, the experiments performed in this
paper do not specifically address challenges associated
with model and discretization errors in the model
updating problem, but rather seek to validate that the
methodology is capable of being successfully applied
for structural identification and damage detection of
well characterized MDOF system models. It should
be noted, however, that noise, uncertainties, and
nonlinearities are introduced in the hybrid simulation
through the experimental measurements obtained from
the experimental substructure.

In this paper, hybrid simulation is used to perform
vibration testing of a truss model for acquisition of
experimental modal analysis data. Between hybrid
simulations, realistic damage is progressively introduced
in the member of the truss by exceeding a limit
state capacity of the experimental substructure. The
damage developed in the experimental substructure is
the development and progression of fracture cracks at

a bolted connection through net section rupture of the
experimental member.

Details on the Experimental Substructure and
Hybrid Simulation

To demonstrate the application of the extended
constraint satisfaction-based approach for structural
identification using the interval hull, this study employs
data from hybrid testing of a simply supported, 45
member 2D Pratt truss with 45 degrees of freedom,
shown in Figure 6. All members were modeled as
nominally identical A36 steel bars with a gross cross
sectional area of 2.42cm2. It is noted that the developed
methodology is generalized for structural identification
of any MDOF system model, including space trusses and
frames. A planar truss is used in this paper to aid in
interpretation of the results. Forthcoming publications
will demonstrate scalability of the methodology to larger
and more diverse system models.

The experimental substructure represented a diagonal
member of the truss in each experiment and consisted
of two 66cm long steel bars with the same gross
cross sectional area. The pair of bars was bolted at
each end to a 9.5mm thick steel gusset plate using
1.27cm diameter grade 5 bolts and flat washers (Figure
5b). The gusset plates were secured in an MTS 810
universal load testing frame using mechanical wedge
grips. Since the mechanical grips displace under changes
in load to increase the grip strength, the internal
LVDT signal from the load frame could not be utilized
for accurate measurement of the specimen elongation.
Instead, an RDP Electrosense ACT1000C LVDT was
installed between the gusset plates to directly measure
the elongation in the experimental substructure. A
control loop was established using the LVDT as a
feedback signal for strain controlled loading of the
experimental substructure that was tuned using the
MTS actuator as the control signal. Measurement
of the restoring force provided by the experimental
member was obtained from the MTS 661.23S-01 load
cell on the load frame. Measurements of force and
member elongation were acquired with a MTS FlexTest
GT controller with Series 493 electronics and were
passed to the computer running the hybrid simulation
software over a National Instruments X-Series USB data
acquisition unit that additionally sent displacement
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a) b)

Figure 5. a) Schematic of the hybrid simulation applied in the current study, b) details of the experimental substructure and
instrumentation

a)

b)

Figure 6. a) Forty-five degree-of-freedom Pratt truss used in hybrid testing program for structural identification and damage
detection, b) First eight natural frequencies and mode shapes of the truss

commands to the controller using a 16-bit analog output
signal. Within the analytical portion of the structure, all
members were idealized with pinned connections and
linear-elastic material properties, although the hybrid
simulation routine accounts for nonlinear geometric
effects. The joint masses were scaled and Rayleigh
damping was prescribed to generate natural frequencies
and damping ratios for the first eight modes of the full
structure that are typical for bridges (Figure 6b).

The hybrid simulations were conducted using
a MATLAB-based pseudo-dynamic implementation
developed in-house and verified in Tedeschi46. The
hybrid simulation framework incorporates nonlinear
geometric effects and implements the incremental-
iterative implicit integration scheme developed by
Mosqueda and Ahmadizadeh47. In the framework,
the acceleration is initially assumed to be zero
and then iteratively corrected to remove unbalanced
forces in the system to converge on a state of
dynamic equilibrium. The iterative scheme is used to
account for nonlinearities and is performed virtually
to avoid unintentional plastic deformations of the
experimental substructure. The iterations fit the most

recent force-displacement measurements using second-
order polynomials to simulate the virtual response of
the experimental substructure while the displacements
are iteratively adjusted. Greater details on the hybrid
simulation framework may be found in Mosqueda and
Ahmadizadeh47.

A total of six experimental vibration tests were
conducted for the healthy condition and all subsequent
damage conditions of the structure through hybrid
simulation. Single shaker excitation was applied in the
gravity direction at node 4 for three tests and applied in
the gravity direction at node 9 for the remaining three
tests per condition. A constant force amplitude swept-
sine signal was applied over a bandwidth from 0 to 20Hz
for a duration of 20 seconds followed by three additional
seconds to allow for the free decay response at the end
of each test. The amplitude of the applied excitation
was scaled such that the stresses in the experimental
substructure remained in the linear elastic range. In
addition, the experimental member was preloaded prior
to each vibration test to simulate the self-weight of the
truss and remained in tension throughout the duration
of each test. For all vibration tests conducted, a time
step of 0.002 seconds was used for the hybrid simulation,
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resulting in an effective sampling rate of 500Hz for the
measured accelerations.

Damage Prescription and Progression

Following initial vibration testing of the truss with
the experimental substructure in the healthy state,
the specimen was progressively subjected to static
overloading exceeding the limit state capacity to develop
cases with increasing extents of damage severity. This
overloading was provided through displacement-control
loading of the experimental substructure. The force
versus elongation response during this overloading is
provided in Figure 7a to document the relative reduction
in load capacity of the experimental substructure for
the first two levels of damage. The first stage of loading
developed damage in the form of a single crack on one
side of a bolt hole (Figure 7b), while the second stage
loading resulted in development and propagation of the
crack on both sides of the hole (Figure 7c). For the
third damage case, the pair of bars in the experimental
substructure consisted of one bar that had completely
failed through net section rupture (Figure 7d), while the
second bar had not yet developed a crack. Consequently,
the reductions in stiffness and strength relative to the
healthy condition are expected to be 50% for this case.

An additional benefit of the use of hybrid simulation
for experimental vibration-based damage detection
research is that the measurement of the force-elongation
response of the experimental substructure provides a
direct, ground truth measurement of the condition of the
damaged member. Figure 8 displays the measured force-
elongation response of the experimental substructure
acquired during the vibration tests, from which the
actual stiffness loss in the experimental member may be
estimated. From the change in slope of these responses,
it is estimated that the initial damage case resulted
in a 7% reduction in the axial stiffness, while the
second and third cases produced approximately 12%
and 50% reductions, respectively. The hysteresis in the
force-elongation response for damage case 3 indicated
moderate nonlinearity that is likely a result of slip at
the bolted connection for the one bar with complete net
section rupture through the cross section.

Since the experimental substructure represented a
diagonal member of the truss, it could be used
to replace any of the diagonals of the truss in
the corresponding analytical model of the hybrid
simulation. This ability of hybrid simulation to place the
experimental substructure at different locations within
the structure was leveraged to validate the methodology
over a larger set of cases. For each state of damage,
vibration tests were performed where the experimental
substructure represented either member 27 or member
31. For each of these tests, the remaining members of
the truss were treated as undamaged, but to include
cases with damage to multiple members of the truss,
two additional sets of vibration tests were performed. In
the first, simulated damage was prescribed in member
5 through a 25% reduction in the member stiffness in
the analytical model, while real damage remained in
the experimental substructure representing member 27.

In the second set, simulated damage was prescribed in
both members 8 and 9 through a 25% reduction in
the member stiffnesses in the analytical model, while
real damage remained in the experimental structure
representing member 31. A summary of the damage
cases investigated is provided in Table 1.

System Identification

Experimental modal parameter estimates were obtained
from the time series data acquired in each test using
the combined deterministic stochastic subspace state-
space system identification algorithm48. Although the
hybrid simulation produces acceleration time histories
for all of the degrees of freedom in the truss, only
those corresponding to a limited sensor array, described
in a subsequent section, were used for the system
identification. Experimental modal parameter estimates
were calculated across a range of model orders and
stabilization plots were developed to identify stable
estimates according to frequency, damping, and mode
shape criteria. If available, five stable poles per mode
were selected from each of the six data sets providing
a maximum of 30 poles per mode. The standard
deviations, σ, of the collected natural frequencies and
mode shape components were used to establish interval
assignments around the means of the modal property
estimates when formulating the constraint equations.

The changes in modal parameter estimates from
the healthy state through each damage scenario are
summarized in Tables 2 and 3 using the percentage
change in natural frequency and modal assurance
criterion (MAC). These statistics indicate that the
change in global modal properties of the truss with
damage is very small, even for the cases where one
bar had completely failed through net section rupture.
Specifically, for the most severe damage scenario, where
the stiffness of the experimental substructure is reduced
by half in addition to members 8 and 9 being prescribed
25% stiffness reductions in the analytical model, the
largest change in natural frequency across the first eight
modes is only 3.4% and the lowest MAC is 0.901. The
magnitude of changes in modal parameters observed
in this experiment are typical of those that have been
observed in field tests of structures49–51.

Structural Identification

The application of the proposed approach of using
constraint satisfaction with interval arithmetic and
the interval hull for structural identification will be
presented first for the cases where the experimental
substructure is in the healthy, undamaged state.
Subsequently, application of the methodology for
damage detection of the truss across the damage cases
in Table 1 will be presented.

Parameter Selection and Sensor Layout

The selection of parameters to include in the model
updating routine is of the utmost importance for
structural identification as parameters that greatly
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Table 1. Summary of damage cases investigated (*represents reduction in analytical portion of hybrid test)

Case Damage Scenario Experimental Substructure Relative Stiffness

1 D0 (no damage) Member 27 α27 ≈ 1.00
2 D1 (small damage) Member 27 α27 ≈ 0.93
3 D2 (moderate damage) Member 27 α27 ≈ 0.89
4 D3 (severe damage) Member 27 α27 ≈ 0.51
5 D4 (severe + simulated∗ damage) Member 27 α27 ≈ 0.51, α∗5 = 0.75

6 D0 (no damage) Member 31 α31 ≈ 1.00
7 D1 (small damage) Member 31 α31 ≈ 0.94
8 D2 (moderate damage) Member 31 α31 ≈ 0.89
9 D3 (severe damage) Member 31 α31 ≈ 0.48
10 D4 (severe + simulated∗ damage) Member 31 α31 ≈ 0.48, α∗8 = α∗9 = 0.75

a)

b) c) d)

Figure 7. a) Force-elongation curve for the first two damage scenarios of specimen one, b) crack initiation on one side of a bolt
hole (specimen one) , c) cracking on both sides of bolt hole (specimen one), and d) net section rupture of one bar (specimen
two)

Table 2. Comparison between modal parameter estimates of the healthy structure to each damage case where member 27 was
the experimental substructure

Damage 1 Damage 2 Damage 3 Damage 4

Mode ∆f(%) MAC ∆f(%) MAC ∆f(%) MAC ∆f(%) MAC

1 0.003 1.000 0.005 1.000 -0.064 1.000 -1.024 1.000
2 -0.056 1.000 -0.115 1.000 -0.793 1.000 -1.865 0.999

3 0.000 1.000 -0.002 1.000 -0.029 1.000 -0.150 1.000
4 -0.176 1.000 -0.316 1.000 -2.307 0.996 -2.412 0.996

5 -0.006 1.000 -0.015 1.000 -0.040 1.000 -1.102 0.999
6 -0.138 1.000 -0.291 1.000 -1.829 0.986 -2.403 0.983
7 -0.013 1.000 -0.026 1.000 -0.092 0.998 -0.145 0.996
8 -0.344 0.999 -0.629 0.998 -4.122 0.929 -4.135 0.932

affect the modal properties should be included, while
parameters that have negligible effect should be
excluded for the sake of computational efficiency.
The selection of parameters is also dependent on

the sensor layout, as the uniqueness of the inverse
problem depends on the availability of the partially
described and incompletely measured modal parameter
estimates. Existing methods for parameter selection
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Table 3. Comparison between modal parameter estimates of the healthy structure to each damage case where member 31 was
the experimental substructure

Damage 1 Damage 2 Damage 3 Damage 4

Mode ∆f(%) MAC ∆f(%) MAC ∆f(%) MAC ∆f(%) MAC

1 -0.004 1.000 -0.025 1.000 -0.145 1.000 -1.732 1.000

2 -0.005 1.000 -0.007 1.000 -0.044 1.000 -1.272 0.998
3 -0.014 1.000 -0.023 1.000 -0.274 0.999 -1.611 0.998

4 -0.182 1.000 -0.331 1.000 -2.541 0.993 -2.844 0.991

5 -0.133 1.000 -0.274 1.000 -1.399 0.992 -1.601 0.989
6 -0.050 1.000 -0.089 1.000 -0.305 0.998 -2.220 0.990

7 -0.076 1.000 -0.122 1.000 -0.564 0.993 -1.187 0.978

8 -0.089 1.000 -0.226 0.998 -1.874 0.888 -3.405 0.901

Figure 8. Force-elongation histories for healthy and damage
cases for the experimental substructure

have often relied on sensitivity analyses and/or sub-
structuring to significantly narrow down the set of
uncertain parameters to a mere handful of structural
properties52. In the current study, a sensitivity analysis
revealed that the vertical members of the truss had little
impact on the first eight natural frequencies and mode
shapes. Consequently, the stiffnesses of these members
were excluded from the structural identification, while
the remaining horizontal and diagonal members were
considered as potential candidates for parameter
identification. The final set of uncertain parameters
included in the subsequent structural identifications was
determined through a parameter identifiability study
informed by the sensor layout.

As previously stated, it is impractical/impossible to
physically measure all degrees of freedom of a model. In
this study, a total of 23 sensor axes were used over the 45
unrestrained degrees of freedom of the truss (Figure 9a)
to provide incomplete measurement of the mode shapes.
Parameter identifiability was assessed using purely
analytical modal parameters for the first eight modes,
although small uncertainty of ±0.0001 was introduced
on the normalized “measured” mode shape components.
The extended methodology for structural identification
using nonlinear constraint satisfaction with interval
arithmetic was applied using the analytical data with
an initial search space for each stiffness parameter
covering the range of 0.5 to 1.5. Figure 9b presents the

interval hull solution for the horizontal and diagonal
members obtained from the structural identification,
which indicates that the available partially described
and incompletely measured modal parameter estimates
acquired from the sensor configuration are capable of
identifying the stiffness of all diagonal members and all
but six of the horizontal members. The unidentifiable
nature of these parameters, as indicated by the inability
of the constraint solver to shrink the domains of these
variables, can logically be attributed to the sparsity of
the sensor layout around these members. As a result of
the parameter identifiability, all verticals and these six
horizontal members were excluded from all subsequent
identification, and the scalar stiffness multiplier for each
of these members, α, was set to one leaving a total
of 28 remaining member scalar stiffness assignments as
unknown parameters.

Identification of the Undamaged Case Using the
Interval Hull

The extended methodology of structural identification
through nonlinear constraint satisfaction with interval
arithmetic was first applied to the experimental
modal parameter estimates acquired from the two
cases obtained from the healthy structure to validate
the approach. For both cases, the eigeninformation
was limited to the first eight modes and the
28 aforementioned stiffness scalars were treated as
unknowns. However, given the incomplete mode
shape measurement, an additional 176 unmeasured
components of the mode shapes arise as additional
unknowns, creating a 204-dimensional search space. To
incorporate measurement uncertainty into the problem,
the measured eigenvector components were prescribed
as intervals, [φavgi,r − σφi,r , φ

avg
i,r + σφi,r ] where φavgi,r and

σφi,r
are the average and standard deviation of the

normalized experimental estimate of the i-th degree of
freedom of the r-th mode shape, respectively. However,
consistent with Equation 6, the component with the
maximum amplitude for each mode was prescribed
the degenerate interval [1,1] to anchor the eigenvector,
since the amplitude of an eigenvector is not unique.
In this implementation, the eigenvalues were prescribed
exactly as the confidence intervals for the response
surface models for the eigenvalue inclusion constraint
exceeded the standard deviation of the individual
natural frequency estimates by an order of magnitude.
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a)

b)

Figure 9. a) Sensor layout chosen to identify all of the diagonal members of the truss b)Determination of identifiable diagonal
and horizontal members based on the interval hull

The search space for the unknown stiffness parameters
was bounded to αk ∈ [0.25, 1.5], where a value of 1
represents no change from the baseline assumption,
while the unmeasured components of the mode shape
were bounded to φj,r ∈ [−10, 10].

The constraint equations generated by Equations
3 and 13 using the first 8 natural frequencies and
corresponding incomplete mode shapes of the healthy
structure were passed to the developed interval hull
solver and the domain of the unknown parameters was
contracted until the perimeter of the search space, that
is the sum of the widths of each interval, changed
less that 0.0001 between two consecutive interval hull
contractions. Figure 10 displays the calculated interval
hull obtained for the healthy case where member
27 was represented by the experimental substructure.
Although the set of 204 unknown parameters was
significantly large, especially with respect to traditional
FE model updating techniques, the proposed approach
was able to successfully contract the interval hull
in approximately 20 minutes of computational time
to identify the uncertain stiffness parameters. As
illustrated in the figure, each interval solution for
the stiffness parameters correctly contains the nominal
stiffness of the healthy members associated with α=1.
The width of each interval in the hull reflects the
confidence in each parameter estimate and is guaranteed
to be a complete enclosure, or superset, of the feasible
parameter range under the prescribed constraints
and measurement uncertainty. The propagation of
measurement uncertainties to the parameter domain is
reflected in uncertainties in the identified parameters
on the order of a few percent. In addition to the
uncertain stiffness parameters, the 176 additional
unknown eigenvector components were also returned
with similarly narrow intervals.

To verify the solution, the upper and lower bounds of
the identified stiffness parameters were used to construct
an interval stiffness matrix for the structure and the
approach in Modares et al.53 was utilized to determine
the interval natural frequencies of the identified model.
Table 4 presents these interval natural frequencies,
which confirms that the identified model constructed
by the interval hull correctly encompasses the eight

prescribed natural frequencies associated with the
healthy model. Most of the interval natural frequencies
are centered about the experimental estimates and the
width of all of the intervals are within 1% of the
experimental values. Similar results were obtained when
the undamaged experimental substructure was used to
represent member 31 of the truss (Figure 11).

Identification of the Damaged Cases Using the
Interval Hull

To demonstrate the capabilities of the proposed
method for damage detection applications, the same
methodology applied in the identification of the
undamaged cases was applied to the data sets acquired
for the remaining eight damaged cases in Table 1.
The constraint equations generated by Equations 3
and 13 were generated with the experimental modal
parameter estimates for each case and passed to
the developed interval hull solver. As in the prior
analysis, the domain of the resulting 207 unknown
parameters was contracted until the perimeter of the
search space changed less that 0.0001 between two
consecutive interval hull contractions. Figure 12 displays
the solutions for the interval hulls for the damaged
cases where the experimental substructure represented
member 27 of the truss. In all cases of damage,
the proposed method clearly and correctly identifies
member 27 as the damaged element. In addition,
Table 5 presents the interval solutions for the scalar
stiffness parameter of member 27, which shows that
the identified extent of damage agrees well with the
expected stiffness loss calculated by the change in slope
of the force-elongation responses of the experimental
substructure. It should also be noted that it can be
stated with certainty that there is a loss of stiffness
in the experimental substructure since α = 1 is not
an element of the identified intervals. Additionally,
Figure 12 illustrates that, even when the uncertainty
in the identified stiffness parameters for the undamaged
members increases at the damage 3 severity due to the
significant nonlinearity in the damaged experimental
substructure (Figure 12c), it cannot be stated with
certainty that the stiffness of the undamaged elements
has changed since α = 1 is a member of the identified
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Figure 10. Interval hull solution for the stiffness scalars with member 27 as the experimental substructure and tested in the
healthy condition

Figure 11. Interval hull solutions for the stiffness scalars with member 31 as the experimental substructure and in the healthy
condition

intervals for those parameters. Furthermore, the means
of the identified intervals for the stiffness of the
undamaged parameters are nearly centered around one.
For case 5, where the stiffness of element 5 was decreased
by 25% in the analytical portion of the structure, the
proposed approach correctly identified the severity of
damage for both elements 5 and 27 of the truss (Figure
12d).

Results for the cases where the experimental
substructure represented member 31 of the truss are
presented in Figure 13 and Table 5. As in the prior
cases, the interval hull solutions in all four damage cases
clearly and correctly identify the damaged element.
However, for case 9, where only member 31 is damaged,
it cannot be stated with certainty that no other
members are damaged given the specified measurement
uncertainty. As illustrated in Figure 13c, the identified
interval solutions for the stiffness of members 8 and
9 do not contain α = 1, which lies just outside of
the intervals. For case 10, which was performed using
new measurement data where elements 8 and 9 were
artificially subjected to 25% losses in stiffness in
addition to the experimentally damaged member 31,
the proposed approach clearly and correctly identified
the location and severity of damage, while providing no
misidentification of undamaged elements as damaged
under the specified measurement uncertainty (Figure
13d).

The false positive identification of minor damage
(less than 5% stiffness change) in the two members in
case 9 is attributed to the significant nonlinearity in
the response of the experimental substructure at this
extent of damage severity coupled with the sparsity
of sensors in proximity of the damaged member.
Both incorrectly classified members are connected to
the damaged member at the same node and no
sensor axes are located at this node. As previously

detailed, the measurement uncertainty for the structural
identification was prescribed using the standard
deviations of the normalized experimental eigenvector
components. If the interval bound for the experimental
modal parameter estimates is slightly increased by
specifying the uncertainty on the experimental modal
parameter estimates as ±1.125σ, the only identified
interval solution for the stiffness parameters that
does not contain α = 1 is that of the damaged
member (Figure 14). Comparisons of the identified
interval solutions for the stiffness parameters produced
with different uncertainty bounds also highlight the
ability of the methodology to quantify the parameter
sensitivities to the measurement uncertainty, as the
expansion in width of the interval vector solution
varies across individual stiffness parameters. Parameter
sensitivities depend on the richness of the experimental
modal parameter estimates (number and location of
sensor axes and number of identified modes), the
quality of the experimental modal parameter estimates,
and the extent to which the physical response of
the structure adheres to or violates the underlying
assumptions in the system model. Notably, the largest
increases in interval widths for this example are
observed for top and bottom chord members in
proximity of the experimental substructure exhibiting
the nonlinear damage. Ultimately, specific confidence
intervals could be associated with the measurement
uncertainties specified in the constraint equations
employed in the developed structural identification
methodology if knowledge of the distributions of the
experimental modal parameters is available. However,
these distributions may be non-normal54 and therefore
not readily estimated from the variances. Furthermore,
the determination of confidence intervals for non-
normal distributions of modal parameters of large civil
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Table 4. Comparison between experimental natural
frequencies and interval natural frequencies of the identified
model for case 1

Mode fexp [f , f ] [∆f(%), ∆f(%)]

1 0.581 [0.577, 0.584] [-0.803, 0.531]

2 2.005 [1.991, 2.017] [-0.685, 0.622]

3 2.792 [2.777, 2.805] [-0.519, 0.485]

4 4.421 [4.393, 4.448] [-0.634, 0.599]

5 6.218 [6.180, 6.255] [-0.614, 0.595]

6 7.746 [7.716, 7.777] [-0.391, 0.399]

7 9.307 [9.262, 9.357] [-0.482, 0.529]

8 10.616 [10.553, 10.687] [-0.587, 0.671]

structures presents several challenges55 that currently
have not been fully addressed in the literature.

Conclusion

Extensions of a newly developed method for structural
identification using nonlinear constraint satisfaction
with interval arithmetic have been presented to permit
the approach to be applied to larger MDOF system
models. The basis of the extended formulation relies
on foregoing computation of a complete set of feasible
solutions and instead contracts the search domain to
the interval hull, which encompasses the complete set of
feasible solutions with a single interval vector solution.
The use of interval analysis in the methodology has
been leveraged to account for measurement and model
uncertainties. In addition, a response surface model was
introduced to allow for enforcement of an eigenvalue
inclusion constraint equation while still enabling interval
contraction over the constraint equations.

Hybrid simulation was utilized for acquisition of
vibration data from both healthy and damaged states
of a planar truss structure subjected to realistic
structural damage. In this paper, a two-bar specimen
with bolted connections representing a single member
of the truss served as the experimental substructure.
Multiple sets of vibration data were acquired for each
damage state from which the standard deviations
about the means of the modal parameter estimates
were used to establish interval assignments in the
constraint equations. Application of the methodology
to data from the undamaged structure demonstrated
the ability of the constraint satisfaction approach to
identify the subset of identifiable parameters in the
model subject to the measurement data and validated
that the response surface methodology introduced into
the eigenvalue inclusion constraint correctly constrained
the interval hull solutions to enclose the measured
natural frequencies. In addition to correctly identifying
the uncertain stiffness parameters in the undamaged
case, the proposed methodology provided accurate
damage identification for all cases of severity without
misidentifying undamaged members as damaged, except
in a single case where the two members directly
connected to the severely damaged member were
identified as having minor changes in stiffness. The
ability of the methodology to quantify the sensitivity

of uncertain parameters in the model to measurement
uncertainties was also demonstrated through expansion
of the interval bounds used to specify the measurement
uncertainty. With a nominal increase in the specified
measurement uncertainty, the two false positives were
rectified with no appreciable effect on the identification
of the stiffness of the damaged member.
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8. Sun H and Büyüköztürk O. Probabilistic updating

of building models using incomplete modal data.

Mechanical Systems and Signal Processing 2016;

75(Supplement C): 27 – 40.

9. Goller B, Beck JL and Schuëller GI. Evidence-based
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Figure 12. Interval hull solutions for the stiffness scalars with the experimental substructure representing member 27 a) damage
case D1, b) damage case D2, c) damage case D3, and d) damage case D4, where member 5 was subjected to a 25% stiffness
reduction in the analytical model
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