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Abstract

Structural identification through finite element model updating has gained increased importance as an applied experi-
mental technique for performance-based structural assessment and health monitoring. However, practical challenges
associated with computability, feasibility, and uniqueness present in the structured nonlinear inverse eigenvalue prob-
lem develop as a result of the necessary use of partially described and incompletely measured mode shapes. As
an alternative to direct methods and optimization-based approaches, this paper proposes a new paradigm for model
updating that is based on formulating the structured inverse eigenvalue problem as a Constraint Satisfaction Prob-
lem. Interval arithmetic and contractor programming are introduced as a means for generating feasible solutions to a
structured inverse eigenvalue problem within a bounded parameter search space. This framework offers the ability to
solve under-determined and non-unique inverse problems as well as accommodate measurement uncertainty through
relaxation of constraint equations. These abilities address key challenges in quantifying uncertainty in parameter
estimates obtained through structural identification and enable the exploration of alternative solutions to the global
minimum that may better reflect the true physical properties of the structure. These capabilities are first demonstrated
using synthetic data from a numerical mass-spring model and then extended to experimental data from a laboratory
shear building model. Lastly, the methodology is contrasted with probabilistic model updating to highlight the advan-
tages and unique capabilities offered by the methodology in addressing the effects of measurement uncertainty on the
parameter estimation.

Keywords: Structural Identification, Finite Element Model Updating, Partially Described Inverse Eigenvalue
Problem, Interval Arithmetic, Vibration-Based Structural Health Monitoring

1. Introduction1

Over the past several decades, numerous techniques have been devised to develop updated structural stiffness2

and mass matrices from modal parameter estimates obtained from either experimental or operational modal analysis.3

Within structural identification, the properties of the updated model are used to infer the behavior and performance4

of the structure to inform decision-making [1]. Consequently, instilling confidence that parameter assignments in5

the updated model closely reflect physical reality is critical to the use of structural identification for applications in6

performance-based civil engineering and structural health monitoring. Likewise, understanding the uncertainty in the7

parameter estimates in the presence of measurement noise and potential ill-conditioning of the inverse problem is8

necessary to provide reliable and actionable information.9

Traditionally, the finite element model updating problem has been framed using the generalized eigenvalue prob-10

lem for undamped multiple degree of freedom linear systems:11

KΦ = MΦΩ2 (1)

where M and K are the mass and stiffness matrices, Ω2 is a diagonal matrix containing the eigenvalues (ω2
n, where ωn12

are the undamped natural frequencies) on the diagonal, andΦ is the matrix containing the corresponding eigenvectors,13
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or mode shapes, as columns of the matrix. This generalized eigenvalue problem has been adopted for the majority14

of structural identification applications since the finite element method can be used to readily construct the mass and15

stiffness matrices, while experimentally measured relative damping factors can be used to construct the corresponding16

damping matrix for the system. The general objective of model updating is to modify the stiffness and mass matrices17

of an analytical model of the structure such that the eigenproperties of the model obtain the best possible match18

to experimentally measured values, while preserving physical meaning and structural constraints in the matrices.19

Although this objective is easily described, there are many practical challenges that arise from the nature of vibration20

testing and analytical modeling that are ubiquitous to all methods employed for model updating. Namely:21

• The practical measurement bandwidth of vibration transducers is limited, which effectively limits the measure-22

ment of the eigenvalues and eigenvectors of the system under test to typically a small subset of all of those23

that would exist in the corresponding analytical model. This case is commonly referred to as having partially24

described eigeninformation pairs [2].25

• It is impractical to completely measure all corresponding degrees of freedom in the analytical model, so the26

experimental mode shapes are incomplete measurements of the eigenvector. For models of even modest size27

structures, the number of sensors required to measure every degree of freedom in a sufficiently discretized finite28

element model is generally prohibitive. Furthermore, the direct measurement of some rows of the eigenvec-29

tor, such as those associated with the rotational degrees of freedom, is not even possible with conventional30

transducers [3].31

• Noise and uncertainty in the measurements, as well as assumptions inherent to system identification algo-32

rithms, yield mode shapes that no longer satisfy orthogonality relationships and are unlikely to satisfy equality33

constraints. Likewise, discretization errors and idealizations inherent to the model, such as element type and34

mesh connectivity, are not explicitly corrected in conventional finite element model updating schemes [4].35

Currently, the two most prevalent techniques applied for structural identification are deterministic and probabilis-36

tic methods of finite element model updating. Deterministic methods seek to identify optimal assignments for a set37

of uncertain parameters in the model by minimizing the residuals between measured and estimated modal parameters38

by application of various optimization techniques [5, 6, 7]. While these techniques have been applied for structural39

identification of several full-scale structures [8, 9], their application is generally plagued by issues associated with40

computational speed, solution uniqueness, ill-conditioning, and parameter selection and sensitivity [10]. Further-41

more, finite element model updating problems suffer from the underlying issue that the global minimum may not42

necessarily reflect the best match to the physical reality due to uncorrected errors arising from idealization and dis-43

cretization in the model and uncertainties in the measurements [4]. These challenges have given rise to probabilistic44

finite element model updating approaches [11], which incorporate uncertainties in the model and the measurements45

to identify the most probable solutions using statistical methods. However, these probabilistic methods require an46

assumed probability density function for uncertain variables and often require computationally expensive simulations47

to arrive at the solution [7]. Lastly, it should be noted that direct methods for solving inverse eigenvalue problems48

with incompletely measured mode shapes through solution of a descriptor Sylvester equation have recently emerged49

[12, 13], however their application has yet to demonstrate the capability to preserve the connectivity structure of the50

matrices.51

Although probabilistic approaches have been the most prevalently used to address uncertainties in structural mod-52

els, interval methods provide an alternative approach that may offer computational advantages over probabilistic53

techniques [14, 15]. Recently, interval-based model updating strategies have been proposed for handling inherent54

uncertainties in the experimental modal parameter estimates and the finite element model [16]. The most closely55

related work to the current study leverages interval global optimization to arrive at solutions to the model updating56

problem [17]. However, the technique proposed in this prior work is formulated on an inclusion set for the eigenvalues57

of an interval stiffness matrix and employs a simple branch and bound algorithm to minimize an objective function58

rather than solve a constraint satisfaction problem. An extension of this work incorporated interval eigenvectors in59

the optimization through an acceptance criteria based on the modal assurance criterion [18]. It should also be noted60

that the term “interval model updating” has also been recently used to described the application of interval arithmetic61

techniques in the estimation of parameter variability [19, 20]. However, these approaches address the field of stochas-62

tic model updating [21], wherein the objective is to characterize the variabilities across a number of experimental tests63
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performed on nominally identical structures. While the constraint satisfaction formulation proposed in the current64

work may have extensions to stochastic model updating, the subject of this current paper is on the class of model65

updating applications where measurements obtained from a single structure are used to calibrate a numerical model.66

This paper presents a novel formulation of the finite element model updating problem as a constraint satisfaction67

problem and explores the use of a nonlinear constraint satisfaction processor with interval arithmetic and contractor68

programming to yield estimates of uncertain model parameters and unmeasured components of the eigenvectors. The69

method is shown to be capable of delivering a complete set of feasible solutions to the structured inverse eigenvalue70

problem with partially described and incompletely measured eigeninformation pairs from either synthetic or experi-71

mental data. Furthermore, the approach is successfully demonstrated on ill-posed problems with multiple solutions72

to illustrate its capability for addressing this challenge as well as providing a foundation to introduce practitioner73

heuristics into the identification of physically plausible solution sets.74

2. Nonlinear Constraint Satisfaction with Contractor Programming and Interval Analysis75

In the domain of engineering sciences, many applications require finding all possible and potentially isolated76

solutions satisfiable to a set of constraints over real numbers. The system of equations may be non-polynomial77

and the computational complexity to solve such systems is NP-hard. This set of problems are called Constraint78

Satisfaction Problems (CSPs) [22, 23, 24]. The approach explored in this paper for the solution of partially described79

and incompletely measured inverse eigenvalue problems relies on framing the structured inverse eigenvalue problem80

as a nonlinear CSP. By developing the model updating problem in this framework, unique capabilities for addressing81

challenges related to ill-posedness and ill-conditioning are revealed, as detailed in later sections. The following82

discussion provides some details on the fundamentals of CSPs, interval analysis, and contractor programming that are83

essential for the understanding of the rest of the paper.84

Fundamentally, a CSP can be defined as a 4-tuple < V,D,C, L > where:85

• V = {v1, v2, ..., vn} is a set of variables86

87 • D = {d1, d2, ..., dn} is a set of domains for prospective variables88

89 • C = {c1, c2, ..., cn} is a set of constraints over the variables90

91 • L is a set of labels that map constraints to the variables and corresponding domains, formally: L : Ci → (vi, di)92

Each variable, vi, can assume any real value in the corresponding non-empty domain di. The constraint ci ∈ C93

is defined over a pair (vi, di) through a label function l ⊂ L. In the process of finding a satisfiable solution to a94

CSP, different values are assigned to the variables (in set V) from the domain set (D) through constraint propagation95

algorithms (also called filtering/contraction algorithms). The evaluation of label (true/false) determines whether the96

corresponding assignments to variables for a given constraint lead to a satisfiable solution or not. While assigning97

values to different variables (through a “systematic search process”), consistency algorithms [25] take into account98

whether any violation of constraints has occurred during any assignment. This whole process is called constraint99

propagation. Likewise, the paradigm for solving CSPs through integration of Systematic Search and Arc Consistency100

techniques is called Constraint Programming (CP).101

A sub-domain of constraint programming that integrates interval arithmetic, called Interval Constraint Program-
ming, offers unique advantages for developing solutions to the inverse eigenvalue problem with experimental data.
In interval arithmetic, variables as well as constraint relationships among variables can be defined using intervals
and mathematical operations can be applied using principles of interval arithmetic [26]. Consequently, interval-based
computation offers a means of placing bounds on round off errors in numerical calculations, measurement uncertain-
ties, and uncertain model parameters. Therefore, rather than defining the exact value of a variable or constraint, it can
be defined over an interval, which implies that it may take any value within that interval. The Cartesian product of
intervals, or interval vector, generates a multi-dimensional volume, or box. Formally, a variable “X” defined over an
interval and the realization of interval vectors can be explained as follows:

X : [a, b]→ {X ∈ ℜ|a ≤ X ≤ b} (2a)
[X] = [x1] × [x2]... × [xn] (2b)

and is illustrated graphically in Figure 1a for the product of two intervals. In an interval constraint programming102

problem, the objective is to completely and correctly identify all interval vectors, to a specified interval precision, that103

satisfy the set of constraint equations within the bounded domains for each set of interval variables.104
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Figure 1: a) An interval vector, or box, generated from the product of two intervals. b) contraction of an interval vector on a system of constraints

2.1. Contractor Programming105

One recent effort toward the integration of interval arithmetic and constraint programming in a formalized solver106

has been termed Contractor Programming [27]. In this approach, contractors can be viewed as mathematical operators107

that accept a system (an n-dimensional box) as an input and contract the domain of the system according to a given set108

of constraints. Contractors yield a reliable set of satisfiable solutions since they must satisfy properties of soundness109

and completeness. The formal definition of a contractor and its properties are defined as follows:110

111

A contractor (C) is a function from C : Iℜn → Iℜn, where Iℜ is interval over reals, with the following proper-112

ties:113

• ∀[X] ∈ Iℜn C([X]) ⊂ [X]; where C([X]) represents box [X] after contraction114

• C([X])∩ System= [X]∩System115

The first property ensures that the contraction algorithm or procedure is sound and that the result achieved after con-116

traction contains a subset of the original box (Figure 1b). The second property elaborates the completeness of the117

contraction algorithm/procedure, which states that no potential solution is lost after contraction is performed. Adher-118

ing to these two properties, contractor programming yields reliable results with a guarantee that feasible solutions are119

not lost within the search space. Following contraction, the interval vector can be bisected into a subset of smaller120

boxes where contractors can be applied to further refine the interval precision of the solution. In this respect, solvers121

employing contractor programming have some parallels to branch and bound algorithms, where subsets of a search122

space are evaluated and either retained or discarded as potential solutions and then the retained subsets are further123

divided and evaluated until the desired interval precision is obtained. However, the process of contraction can result124

in a significantly faster exploration of the search space than pure branching methods, such as bisection [28].125

Although many domain experts in structural engineering will be unfamiliar with the concept of constraint pro-126

gramming and contractors, the general application to a variety of challenging nonlinear engineering problems has127

been made possible through the open-source IBEX C++ numerical library [29]. For the current study, the authors128

have developed an interface between the MATLAB interactive environment [30] and the IBEX 2.1.17 library to con-129

struct and parameterize the structural stiffness and mass matrices, develop mechanics-based constraint equations,130

pass the formulated CSP to the IBEX solver, and parse any and all interval solutions generated by the contraction131

algorithm for subsequent analysis. In this study, the generic default solver in this release of IBEX, which employs132

forward-backward contraction through the HC4 algorithm [31] and adaptive constructive interval disjunction [32], has133

been used for all of the examples presented to promote accessibility of the developed model updating formulation to134

a broader audience. Details on the implementation for finite element model updating are presented following a short135

illustrative example demonstrating the key benefits sought from this alternative to optimization-based strategies for136

inverse problems.137
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2.2. Illustrative Example Using Cross-in-Tray Function138

A brief example illustrating the computational advantages offered by contractor programming techniques is pre-139

sented to provide motivation for its use in finite element model updating. Specifically, the finite element model140

updating challenges related to ill-posedness and the desire to obtain alternative solutions in the presence of experi-141

mental noise and uncertainty are highlighted by use of a nonlinear function with a large number of local extrema,142

multiple global minima, and discontinuities. For this illustration, we consider the Cross-in-Tray function:143

f (x, y) = −0.0001


∣∣∣∣∣∣∣sin(x)sin(y) exp


∣∣∣∣∣∣∣100 −

√
x2 + y2

π

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣ + 1

0.1 (3)

which has been adopted as a benchmark for performance testing of optimization algorithms and features four global144

minima at {x, y} = (±1.34941,±1.34941) corresponding to a function value of -2.06261. The domain of the search145

space was bounded to x ∈ [−10, 10] and y ∈ [−10, 10], which corresponds to the region shown in Figure 2a. This146

function was first encoded in an equality constraint equation where satisfiable solutions were required to adhere147

to the exact function minimum and the IBEX constraint processor successfully identified all four global minima in148

approximately 0.02 seconds. This ability to identify multiple solutions by contractor programming will be leveraged to149

overcome uniqueness challenges in the inverse eigenvalue problem. In addition, by relaxing the equality constraint to150

an inequality constraint, f (x, y) ≤ −1.75, the solver demonstrates the ability to identify all feasible alternative solutions151

to the unknown parameters x and y that yield results similar to the global minima of this challenging nonlinear and152

discontinuous function within half of a second (Figure 2b). This ability to completely identify all feasible solutions to153

a set of relaxed constraint equations will be leveraged to address challenges associated with measurement uncertainties154

and the effects of potential ill-conditioning in the finite element model updating problem. Note that the boxes shown in155

this plot reflect the bisection and contraction processes performed to arrive at the interval solutions, which illustrates156

the computational efficiency over pure branch and bound algorithms.157

a.) b.)

Figure 2: a.) Cross-in-Tray Function, b.) Set of satisfiable solutions produced with relaxed inequality constraint using contractor programming (all
boxes shown represent interval vectors after subsequent contractions and shaded boxes indicate satisfiable solutions)

3. Formulation of Interval Constraint Equations for the Structured Inverse Eigenvalue Problem158

The real-valued inverse eigenvalue problem aims to solve for the symmetric matrices M and K, which are positive-159

definite and positive-semidefinite, respectively, given specified eigeninformation matrices (Ω2,Φ). Within the appli-160

cation to finite element model updating, additional conditions are generally applied to the inverse eigenvalue problem,161

such as conditions to maintain the sparsity structure of the matrices to ensure proper connectivity of elements in the162

model and to ensure physically meaningful solutions. In our proposed approach to model updating, we formulate163

the generalized eigenvalue problem as a matrix-based constraint equation and apply additional mechanics-based con-164

straint equations to enforce desired qualities on the structural matrices associated with the updated model. In the165
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generalized eigenvalue problem for undamped multiple degree-of-freedom (MDOF) discrete systems, the structural166

matrices are n×n square, where n is the number of unrestrained degrees of freedom in the model. Numerically, eigen-167

decomposition of these matrices will produce n eigenpairs. However, in practical applications of model updating it is168

generally prohibitive to obtain corresponding measurements of all of these eigenpairs due to a variety of experimental169

limitations, including the measurement bandwidth of conventional vibration transducers, insufficient excitation of all170

modes, and restrictions on the number of sensors available. Therefore, the majority of model updating problems are171

classified as partially described, where only m < n eigenpairs are measured. Under these conditions, the constraint172

equations developed for the inverse eigenvalue problem must necessarily be formulated using only m modes, as:173

Kn×nΦn×m − Mn×nΦn×mΩ
2
m×m = 0n×m (4)

Consequently, the partially described eigenvalue problem yields a total of n × m unique constraint equations.174

However, since it is generally impractical or impossible to measure all n degrees of freedom associated with the175

analytical model being updated, the eigenvectors included in these constraint equations will be incompletely measured.176

As a result, the number of unknowns in the eigenvector matrix will be of size (n − s) × m, where s corresponds to the177

number of measured degrees of freedom or sensors, and the matrix constraint equation can be partitioned as:178

Kn×n

[
ΦM

s×m
ΦU

(n−s)×m

]
− Mn×n

[
ΦM

s×m
ΦU

(n−s)×m

]
Ω2

m×m = 0n×m (5)

whereΦM
s×m are the rows of the measured components of the mode shapes andΦU

(n−s)×m are the rows of the unmeasured179

components of the mode shapes. Conventional approaches for linear parameterization of the structural matrices can180

also be introduced to the governing constraint equations to enforce additional mechanics-based constraints on the181

updated model. In the formulation of generalized eigenvalue problem employed for all numerical and experimental182

examples in this paper, the structural matrices are explicitly formed through elemental contributions, or basis matrices.183

Consequently, the constraints on the sparsity pattern of the structural matrices are explicitly encoded in Eq. 5 to184

produce:185 Ko +

NK∑
j=1

α jK j

 [ ΦM
s×m

ΦU
(n−s)×m

]
− Mn×n

[
ΦM

s×m
ΦU

(n−s)×m

]
Ω2

m×m = 0n×m (6)

where α j is a scalar multiplier applied to the basis matrix, K j, that provides the stiffness contributions of the j-th186

element of the model, while Ko represent the contributions of any elements in the model not subject to updating. In187

this formulation, the unknowns in the inverse eigenvalue problem are the NK scalar multipliers and the (n − s) × m188

unmeasured components of the eigenvector matrix. Using interval arithmetic and contractor programing, the solutions189

for these unknown quantities that satisfy the constraint equation in Equation 6 within a bounded search space will be190

determined to a prescribed interval precision, or width. Consequently, the methodology develops an interval stiffness191

matrix, K I , since the uncertain parameters in the model are treated as the intervals:192

α = [α, α] (7)

where α is the lower bound to the interval for the uncertain parameter and α is the upper bound. Likewise, the193

unknown components of the eigenvector matrix are treated as intervals that are subsequently bisected and contracted194

until the desired precision of the solution is achieved:195

ΦU
(n−s)×m = [ΦU

(n−s)×m,Φ
U
(n−s)×m] (8)

It should be noted that, in addition to the stiffness matrix, the mass matrix can also be parameterized. The authors196

have successfully implemented such cases, however the current paper focuses only on parameterization of the stiffness197

matrix to yield results with a physical basis that is more readily interpreted for cases with multiple solutions.198

In the presence of measurement uncertainty and idealization errors in the model, an additional set of constraint199

equations must also be introduced to ensure that the prescribed eigenvalues are consistent with the stiffness and mass200

matrices assembled with the interval uncertain parameter assignments. In other words, while feasible solutions to the201

equality constraints in Equation 6 with noise-free eigeninformation pairs guarantee that the prescribed values in Ω2
n×m202
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are contained within the interval eigenvalues of the mass and stiffness matrix, this is not guaranteed if ΦM
s×m are not203

exact eigenvectors of the structural matrices. Consequently, an additional set of constraints, which we refer to herein204

as the eigenvalue inclusion constraints, must be introduced to ensure that the specified eigenvalues are contained205

within the interval eigenvalues of the structural matrices. However, solving for the eigenvalues of systems described206

by interval mass and stiffness matrices requires iterative methods to perform the eigenvalue decomposition that are not207

compatible with the direct arithmetic operations used within contractor programming to contract the interval vectors.208

In order to overcome this limitation, the specified eigenvalues are checked for inclusion by substituting each into the209

characteristic equation formed from the determinate:210

∣∣∣K I − ω2
r M
∣∣∣ = ∣∣∣∣∣∣Ko +

NK∑
j=1

[α j, α j]K j − ω
2
r M
∣∣∣∣∣∣ = 0 (9)

Finally, in addition to these eigenvalue inclusion constraints, orthogonality constraints are introduced to aid with
the identification of the unmeasured components of each mode shape. For each of the eigenvectors included in the
prescribed eigeninformation matrix, ϕ, the following constraint equations can be enforced:

ϕT
r Mϕq = 0, r , q (10a)

ϕT
r K Iϕq = 0, r , q (10b)

ϕT
r K Iϕr

ϕT
r Mϕr

= ω2
r (10c)

For synthetic data absent of measurement noise and fully consistent with the underlying analytical model, the211

matrix equality constraints in Equations 6, 9, and 10 can be applied in the constraint satisfaction problem to yield212

satisfiable solutions to the inverse problem. However, in practical applications, the matrix constraint equations need213

to be relaxed to account for measurement errors and the idealizations inherent within the discrete representation of the214

physical structure. In our treatment of this problem, measurement uncertainties are accounted for by relaxing the mea-215

sured modal parameters from real numbers to intervals centered around the experimental estimates. In this relaxation,216

each partially described eigenvector, ϕM
r , in the matrix containing the measured components of the mode shapes,ΦM

s×m,217

is first scaled to unity maximum amplitude and then an interval is constructed around all but the maximum amplitude218

component of the measured mode shape as:219

ϕI,M
i,r = [ϕ

i,r
, ϕi,r] =

[ϕM
i,r − χi,r, ϕ

M
i,r + χi,r] if ϕM

i,r , 1
[1, 1] if ϕM

i,r = 1
(11)

where χi,r is a specified radius for the intervals. The motivation behind not relaxing the maximum amplitude compo-220

nent of the mode shape is to establish this component as a fixed reference for the eigenvector, since the amplitude of221

an eigenvector is not unique. Likewise, the experimentally measured eigenvalues can be prescribed as intervals:222

ωI
r = [ωr, ωr] (12)

to reflect uncertainty in the experimental estimates of the natural frequencies. These interval relaxations of the mea-223

sured eigeninformation apply to the constraint equations in Equations 6 and 10.224

The radius of the intervals can either be established based on a measure of uncertainty in the experimentally225

estimated modal parameters, if available, or can be iteratively assigned based on the solvability of the constraint226

satisfaction problem. If the radius is prescribed too low in the presence of measurement and idealization errors, the227

nonlinear constraint satisfaction processor will return no solutions indicating that there are no satisfiable solutions to228

the inverse eigenvalue problem. This would be analogous to establishing a constraint equation for the Cross-in-Tray229

function described in Section 2 with the function equated to a value below the global minimum. Fortunately, the IBEX230

nonlinear constraint satisfaction solver can very efficiently identify non-satisfiable cases, which allows for progressive231

widening of the radius, χ, until satisfiable solutions are first yielded. In addition, one can continue to increase this232

radius to further relax the constraint equation, which can be used to provide a measure of how well conditioned the233

inverse problem is for the given uncertain parameters in the model as well as identify alternative solutions similar234

to those identified around the global minimum. This extension would be analogous to application of the relaxed235
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Figure 3: Six degree-of-freedom mass-spring system considered in numerical verification

inequality constraint for the Cross-in-Tray function described in Section 2, where the relative steepness of the basins236

around the global minimum and the presence of local minima were exposed. These unique features of the developed237

methodology are demonstrated for the model updating problem using both numerical and experimental data in the238

following sections of this paper.239

4. Numerical Verification of Methodology240

To demonstrate the capabilities of the formulated constraint satisfaction-based approach for the model updating241

problem, this study first numerically considers a 1st-order statically indeterminate spring-mass system with six degrees242

of freedom, shown in Figure 3. The structural configuration of this model was intentionally selected in order to243

generate ill-posed cases to the inverse eigenvalue problem admitting multiple solutions as well as spurious modes.244

Through linear parameterization of the model, elemental contributions to the stiffness matrix from each linear elastic245

spring are explicitly defined in the structured matrices. The mass and stiffness properties of the system were assigned246

to closely parallel an experimental analog to this numerical model that is subsequently presented in this paper for247

experimental validation. The eigenpairs of this undamped system were generated through eigendecomposition and248

are presented below the schematic representation of the MDOF model in Figure 3. The eigenvectors are normalized249

with respect to the measured sensors such that the magnitude of the largest entry in each eigenvector is one, rather250

than mass normalized. This is done to minimize any bias in the interval precision applied to the solution of the251

unmeasured components of each eigenvector when applying contractor programming to solve the constraint equations.252

Furthermore, the normalization serves to demonstrate that the generalized approach is applicable both to cases of253

model updating applied with results from experimental modal analysis (EMA), where mass normalization of the254

modes is possible, and operational modal analysis (OMA), where mass normalization of the modes is prohibited due255

to the lack of measurement of the input excitation forces.256

4.1. Application to a Well-Posed Problem257

To verify the framework on a well-posed problem, the seven spring stiffness assignments, {k1, k2, ..., k7} were
treated as uncertain parameters in the model. In order to produce a partially described inverse eigenvalue problem
with incompletely measured modes, synthetic measurements of the mode shapes were limited to those from degrees
of freedom u2, u4, and u5 and the eigeninformation was limited to the first three modes. Consequently, the eigenpairs
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provided to the finite element model updating problem were:

Ω =

60.8753 0 0
0 160.9348 0
0 0 239.8156

 Φ =


ϕ1,1 ϕ1,2 ϕ1,3
0.2108 0.6888 1.0000
ϕ3,1 ϕ3,2 ϕ3,3

0.6987 1.0000 −0.5713
1.0000 −0.0895 −0.9026
ϕ6,1 ϕ6,2 ϕ6,3


where the measured eigenvector components are actually prescribed as intervals, [ϕ

i,r
, ϕi,r], centered around these258

values, as in Eq. 11. Since the unmeasured components of the mode shapes appear in the constraint equations formed259

from the generalized eigenvalue problem, the incomplete eigenvector matrix introduces nine additional unknowns260

to the seven unknown stiffness parameters. The search space for these 16 unknowns was constrained by introducing261

bounds on the uncertain parameters in the model, k j ∈ [0.1 N/cm, 2500 N/cm], and on the unmeasured components of262

the mode shapes, ϕi,r ∈ [−10, 10]. For this example, an interval precision of 25 for the uncertain stiffness assignments263

and 0.025 for the unmeasured components of the mode shapes were specified for the stopping criteria of the CSP. The264

difference in the specified required interval precisions was chosen to reflect the differences in the relative amplitude265

of the stiffness assignments compared to the components of the normalized mode shapes.266

Despite the significant number of unknown variables in the coupled nonlinear constraint equations and the large267

search space associated with these unknowns, the nonlinear constraint solver was found to be capable of mapping268

the feasible solution space in only a few seconds of CPU time. Figure 4 presents the sets of interval vector solu-269

tions developed with three different radii of measurement uncertainty, χ, introduced uniformly around the synthetic270

measurements of the three mode shapes. For the smallest radius, χ = 0.0001, the solution consists of three interval271

vectors, one of which contains the exact solution for the stiffness values and unmeasured components of the mode272

shapes. By increasing the radius associated with the measurement uncertainty, a set of interval vector solutions is273

developed that produce a basin around the exact solution. This ability to map the feasible solutions under a set of274

relaxed constraints provides a means of quantifying the uncertainty in the identified parameters of the model, while275

retaining the relationships between the parameters contained in the solution set. In this example, these basins reveal276

that the relative uncertainty associated with the inverse solution to parameters k6 and k7 with χ = 0.001 is very low277

(less than ±0.4%), while the conditioning of the inverse problem leads to larger uncertainty for parameters k1, k2, k3,278

and k4 (approximately ±5%) and the parameter with the greatest uncertainty is k5 (approximately ±10%). It should279

also be noted here that refining the interval precision of the solutions was found to not significantly alter the basins280

of solutions yielded by the solver. However, by reducing the required interval precision at the expense of additional281

computational time, the boundary of each basin is refined to a smoother approximation as boxes with smaller width282

can more accurately map the curvature along this perimeter.283

4.2. Application to an Ill-Posed Problem284

Model updating has conventionally not been applied to problems that are ill-posed as a result of limited experi-285

mental data relative to the uncertain parameters in the model, since optimization schemes are not suitable for cases286

with non-unique solutions. However, framing the model updating problem as a CSP allows for solution of such prob-287

lems and, as demonstrated in the following example, may introduce novel capabilities for parameter identification288

in structural health monitoring applications. Extension of this problem to an ill-posed case can be demonstrated by289

limiting the prescribed eigeninformation to the first two eigenvalues and the corresponding incomplete eigenvectors.290

In this case, the synthetic measurement data for the model updating problem is provided as:291

Ω =

[
60.8753 0

0 160.9348

]
Φ =



ϕ1,1 ϕ1,2
0.2108 0.6888
ϕ3,1 ϕ3,2

0.6987 1.0000
1.0000 −0.0895
ϕ6,1 ϕ6,2
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Figure 4: Feasible solutions for a well-posed analytical case of model updating with increasing uncertainty on the measured components of the
mode shapes

Since the problem is ill-posed due to the non-uniqueness of the inverse solution, there are a large number of solutions292

to this inverse eigenvalue problem without having to introduce the interval relaxation on the measured components293

of the mode shapes. In developing the CSP for this problem, the same bounds previously enforced on the uncertain294

parameters and unmeasured components of the eigenvector matrix were specified. An interval precision of 2 for the295

uncertain stiffness parameters and 0.002 for the unmeasured components of the mode shapes were specified for the296

stopping criteria. Application of the IBEX nonlinear constraint solver for solution of the CSP using contractor pro-297

gramming produced 4,386 feasible interval vector solutions. Across all feasible solutions to the inverse eigenvalue298

problem, three distinct basins of interval solutions were discovered within the bounded search space. These basins299

of feasible solutions are presented for each of the seven stiffness assignments in Figure 5a, where the stiffness as-300

signments in the model used to generate the synthetic data are presented as a marker in each subplot. It should be301

emphasized that, due to the intentionally ill-posed nature of the problem, all of the solutions obtained are correct solu-302

tions to the inverse eigenvalue problem subject to the partially described and incompletely measured eigeninformation303

matrices prescribed. Forward solution of the eigenvalue problem with the identified parameter sets was used to con-304

firm that each of the feasible solutions correctly exhibits the two prescribed eigenvalues and corresponding measured305

components of the eigenvectors.306

There are several important features of the set of feasible solutions developed that provide motivation for further307

exploration of this constraint satisfaction approach to model updating. First, a closer examination of the complete308

modal parameters produced by eigenvalue decomposition of the reconstructed models generated with each set of fea-309

sible parameter sets reveals that the solutions in two of the basins exhibit spurious modes. As indicated by Figure 5b,310

only the parameter sets contained within the first basin exhibit natural frequencies for the first two modes that match311

the prescribed eigenvalues. Parameter sets within the other two basins produce models where the natural frequencies312

of higher-order modes match the prescribed eigenvalues. Assuming that either vibration testing or engineering judg-313

ment is able to discredit the presence of any additional modes within the bandwidth of prescribed data, these basins314
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of solutions could be discarded as physically implausible to reduce the feasible solution space.315

Second, in addition to identifying the uncertain parameters in the model, the approach also identifies feasible316

values for the unmeasured components of the mode shapes in the prescribed eigenvector matrix. This permits the317

identification of spurious solutions, or feasible solutions that do not exhibit reconstructed mode shapes consistent with318

expectations, without requiring eigenvalue decomposition of the each feasible model, which can be computationally319

intensive for large analytical models. Figure 5c presents a comparison between the complete mode shapes from the320

original model and reconstructed mode shapes typical of each basin produced through constraint satisfaction. These321

comparisons reveal that the parameter sets admitting spurious modes can be readily identified by their reconstructed322

mode shapes, which differ significantly from the complete solution since they are higher-order modes. Therefore, with323

practitioner judgment is it possible to discard spurious solutions by simply evaluating the reconstructed mode shapes,324

which are included in the solution set and therefore can be evaluated with no additional computational expense in this325

methodology. This concept of integrating “human-in-the-loop” strategies for assessing alternative solutions within326

finite element model updating has been recently proposed by Caicedo and Yun [33] and is a possible extension of the327

current study that will be explored in future work. Additionally, techniques such as finding the natural, or minimum-328

length, solution with respect to the expected parameter values can be used to select updated parameter sets within329

under-determined problems [34].330

Third, in addition to being able to describe the nonlinear interrelationships among spring stiffness assignments331

yielding feasible solutions, the basins establish the permissible range, or uncertainty, associated with each identified332

stiffness parameter. While the ill-posed nature of the problem explored produces a wide range of uncertainty across333

five of the spring stiffnesses, two spring stiffness assignments (k6 and k7) were identified as constants within each334

basin. Consequently, the approach exactly identified uncertain parameters in a substructure of the model despite335

the severely limited data provided. It is particularly interesting to note that the nonlinear constraint solver exactly336

identifies the spring stiffness k7 despite the absence of a measurement on the attached mass, m6. The development337

of sensor placement strategies to produce parameter identification within targeted substructures may be an interesting338

future extension of this work.339

5. Experimental Application on a Shear Building Model340

To validate the application of the proposed methodology on an experimental dataset, a laboratory-scale six-story341

shear building structure was developed as an analog to the mass-spring model used in the numerical verification (Fig-342

ure 6a). This structure was constructed of 15.2 cm deep and 1.3 cm thick aluminum plate masses serving as rigid343

diaphragm floors at each story elevation. The plate mass at the third floor elevation was 10.2 cm wide, while the344

other plate masses were 20.3 cm wide. These plates were supported by 15.2 cm wide aluminum sheets with different345

thicknesses, as indicated in Figure 6b, to vary their stiffness. An aluminum plate washer and row of four flange-head346

cap screws were used on each side of the plate masses to secure the sheets to each floor. Prior to experimental modal347

analysis, each cap screw was torqued to 1084 N·cm to ensure uniform connectivity. If the behavior of the test structure348

is idealized with the typical assumptions adopted for a shear building model, a six degree of freedom simplified analyt-349

ical representation of the system can be constructed that corresponds to the model used for the numerical verification350

in the prior section, shown in Figure 3. A lumped mass matrix formulation was adopted for this study and the lumped351

masses used in the model were measured by weighing individual components of the structure. Likewise, estimations352

of the stiffness contributions for each of the aluminum sheets serving as columns were obtained by approximating353

each as a fixed-fixed beam subject to relative end deflection. Both the measured masses and approximated stiffness354

contributions in the model are presented in Figure 3 and were used in the prior numerical verification.355

5.1. Vibration Testing and System Identification356

Experimental modal analysis of the structure was conducted using six Measurement Specialties 4000A-002 single-357

axis accelerometers featuring a full-scale range of ± 2g, 0-200 Hz measurement bandwidth, and 35 µg/
√

Hz spectral358

noise. These vibration transducers were mounted to each plate mass of the test structure with a thin layer of wax359

to measure the in-plane lateral response in the weak direction of the building frame. A PCB Piezotronics 086C03360

modally tuned impact hammer with super-soft tip was used to provide impulse excitation to the structure. A National361

Instruments PXIe-4497 24-bit simultaneously sampling dynamic signal analyzer was used for signal conditioning362
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a.)

b.)

c.)

Figure 5: Complete set of feasible solutions for non-unique model updating problem with numerical data: a.) Basins of feasible stiffness assign-
ments; b.) Natural frequencies associated with the feasible solutions; c.) Comparison of reconstructed mode shapes to the complete analytical
modes from the reference structure
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and acquisition of the accelerometer signals as well as the impact force with a sampling rate of 10 kHz. Frequency363

response functions developed using the classical H1 estimator [35] are presented in Figure 6c for the bandwidth364

encompassing the six modes associated with the response of shear building model in the weak-axis of bending.365

Experimental estimates of the modal parameters were obtained through system identification using the combined366

deterministic stochastic subspace state-space system identification algorithm [36]. In application of this algorithm,367

experimental modal parameter estimates for the structure were calculated through eigendecomposition of the state368

matrix across a range of model orders and stabilization plots were utilized to select consistent pole estimates. In order369

to obtain improved estimates of modal parameters to attenuate effects of measurement and process noise, five stable370

poles and their corresponding eigenvectors were averaged for each experimental mode. The identified undamped371

natural frequencies are presented in Figure 7 along with the identified real-valued mode shapes.372

5.2. Experimental Application to a Well-Posed Problem373

Consistent with the numerical verification, the seven stiffness assignments were treated as uncertain parameters
in the analytical model of the shear building structure and the experimental data was limited to measurements from
degrees of freedom u2, u4, and u5. To parallel the construction of the problem in Section 4.1, the partially-described
and incomplete experimental eigeninformation was first provided to the nonlinear constraint solver as:

Ω =

61.2953 0 0
0 165.8179 0
0 0 245.3396

 ; Φ =



ϕ1,1 ϕ1,2 ϕ1,3
0.2606 0.9582 −0.9963
ϕ3,1 ϕ3,2 ϕ3,3

0.7436 1.0000 1.0000
1.0000 −0.2527 0.7103
ϕ6,1 ϕ6,2 ϕ6,3


with the measured eigenvector components are prescribed as intervals, [ϕ

i,r
, ϕi,r], centered around the values shown374

with the uniform radius χ. Likewise, the search space for unknowns in the constraint equations was established375

by bounding the uncertain parameters in the model to ki ∈ [0 N/cm, 2500 N/cm] and bounding the unmeasured376

components of the mode shapes to ϕ j,k ∈ [−10, 10]. As in the numerical verification, an interval precision of 25 for377

the uncertain stiffness assignments and 0.025 for the unmeasured components of the mode shapes were specified for378

the stopping criteria of the CSP.379

The nonlinear constraint solver was applied iteratively to the set of constraint equations by incrementing the size380

of the radius, χ, around the measured eigenvector components until feasible solutions were generated. When the381

a) b) c)

Figure 6: Laboratory six-story shear building model: a.) photograph of instrumented test structure, b.) structural geometry and thickness of
aluminum sheet columns, c.) frequency response functions obtained from impact excitation at elevation of first story mass
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Figure 7: Undamped natural frequency and mode shape estimates of the test structure obtained through system identification

radius was increased to 0.0027, the nonlinear constraint solver generated 3 solutions within the parameter search382

space in less than 10 seconds of computational time. To quantify the uncertainty in the parameter estimates and383

reflect the relative conditioning of the inverse problem for each uncertain parameter, the radius on the uncertain384

eigenvector measurements was further increased over two increments and the basins of solutions are presented in385

Figure 8. As in the numerical verification, these basins provide a means of assessing the relative uncertainties in386

individual parameters and indicate that relatively small changes in the measured components of the mode shapes387

result in admitting a large number of solutions for this problem. This is a reflection of the conditioning of this inverse388

problem, however the formulated approach allows for quantifying the sensitivity of the individual parameters to the389

measurement uncertainties. As in the numerical example, certain parameter estimates (k6 and k7) are found to be less390

sensitive to measurement uncertainties and can be reliably identified in the presence of conditioning issues.391

A representative interval solution for the uncertain parameters obtained from the original solution basin is pre-392

sented in Table 1. Despite the large search space, the nonlinear constraint solver identified assignments for the stiff-393

ness parameters that are generally consistent with the idealized approximations. Discrepancies between the identified394

stiffness assignments and approximations can be partially attributed to the assumptions used to develop the theoretical395

estimates, material and fabrication tolerances in the construction of the experimental model, and idealization errors396

introduced by modeling this continuous system as a discrete MDOF system. Additionally, as demonstrated in Figure397

8, the problem is not particularly well-conditioned and, consequently, select parameter estimates are sensitive to mea-398

surement errors and could be improved by inclusion of additional eigeninformation in the inverse problem. To verify399

the interval solution, interval modal analysis was performed using the assumed mass matrix and the interval stiffness400

matrix constructed with the interval vector for the identified stiffness parameters. The interval eigenvalues for this401

system were then derived using the interval modal analysis technique presented in Sim et al. [37]. Table 2 provides402

a comparison between the experimentally estimated natural frequencies and the interval natural frequencies produced403

by the updated model. The solution is found to contain each of the three prescribed natural frequencies with a tight404

enclosure around the experimental estimates.405

5.3. Experimental Application to an Ill-Posed Problem406

Similar to the numerical verification, an ill-posed case with uniqueness challenges was also investigated using
incomplete measurement data from the first two modes. In this example, the following partially-described and incom-
pletely measured experimental eigeninformation matrices were provided as prescribed data for the model updating
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Figure 8: Feasible solutions for a well-posed experimental case of model updating with increasing uncertainty on the measured components of the
mode shapes

problem:

Ω =

[
61.2953 0

0 165.8179

]
; Φ =



ϕ1,1 ϕ1,2
0.2606 0.9582
ϕ3,1 ϕ3,2

0.7436 1.0000
1.0000 −0.2527
ϕ6,1 ϕ6,2


The CSP for this problem was established with the same bounds on the unknown variables as the prior examples and,407

due to the ill-posed nature of the problem, the measured components of the mode shapes were not relaxed to interval408

estimates. An interval precision of 2 for the uncertain stiffness parameters and 0.002 for the unmeasured components409

of the mode shapes were specified for the stopping criteria. Application of the IBEX nonlinear constraint solver to the410

formulated constraint satisfaction problem yielded 5,890 feasible interval vector solutions with three distinct basins411

similar to those developed in the numerical verification discovered within the bounded search space (Figure 9a). For-412

ward solution of the eigenvalue problem with the identified stiffness parameter sets was used to confirm that each of413

the feasible solutions correctly exhibit the two prescribed eigenvalues and corresponding measured components of the414

eigenvectors within the prescribed relaxation tolerance. As in the numerical example, two of the basins of feasible415

solutions were found to exhibit spurious mode development. For these combinations of stiffness parameter assign-416

ments, the updated model gives rise to additional eigenvalues within the frequency bandwidth of the two prescribed417

eigenvalues (Figure 9b). Typical reconstructed mode shapes for each basin using the identified missing components418

of the prescribed mode shapes are provided in Figure 5c, which parallel the solutions obtained with the numerical419

example to further validate the extension of the proposed methodology to experimental data. In addition, two of the420

uncertain parameters in the model (k6 and k7) were exactly identified in all three of the solution basins, despite the421

ill-posed nature of the problem. Furthermore, the identified assignments for these parameters in the first basin agree422

with those identified in the previous solution to the well-posed problem.423
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a.)

b.)

c.)

Figure 9: Complete set of feasible solutions for non-unique model updating problem with experimental data: a.) Basins of feasible stiffness assign-
ments; b.) Natural frequencies associated with the feasible solutions; c.) Comparison of reconstructed mode shapes to the complete experimental
measurements
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Table 1: Comparison of stiffness estimates to experimental results obtained using three incompletely measured eigenpairs

Parameter Interval Solution, [k j, k j]

k1 [1850.4 , 1864.6]
k2 [1181.0 , 1192.8]
k3 [388.9 , 397.4]
k4 [264.7 , 267.7]
k5 [160.2 , 162.6]
k6 [422.5 , 424.1]
k7 [445.5 , 446.6]

Table 2: Comparison between experimental modal estimates and updated model

Mode fexp [ f , f ] [∆ f (%), ∆ f (%)]

1 9.7555 [9.7251, 9.7786] [-0.3110, 0.2377]
2 26.3907 [26.3343, 26.4080] [-0.2137, 0.0653]
3 39.0470 [39.0123, 39.0550] [-0.0888, 0.0204]

6. Comparison to Bayesian Model Updating Approaches424

As noted in the introduction, the developed methodology offers an alternative to probabilistic methods of finite el-425

ement model updating. Beyond simply accounting for the challenges of measurement uncertainty in model updating,426

nonlinear constraint satisfaction provides unique advantages and capabilities that are not offered by current proba-427

bilistic techniques. To highlight these differences, particularly with respect to addressing the effects of measurement428

uncertainty on the parameter estimation, the challenges and limitations of probabilistic model updating are briefly429

reviewed and a comparison between probabilistic model updating and the nonlinear constraint satisfaction approach430

is presented using a simple benchmark example problem.431

In contrast to the constraint satisfaction methodology presented in this paper, Bayesian model updating approaches432

rely on an likelihood function to quantify the model correlation. When modal data is used, the likelihood function433

includes a modal measure of fit function that incorporates an objective function for the natural frequencies and an434

objective function for the partially described mode shapes. For illustration, a commonly used modal measure of fit,435

provided by [38], is:436

J(θ) =
Nm∑
r=1

Ns∑
j=1

 (1 − ω̂2
r, j/ω

2
r )2

ε2

 + ϕT
r (I − ϕ̂r, jϕ̂

T
r, j)ϕr

δ2||ϕr ||
2

 (13)

where Nm is the number of modes included in the identification, Ns is the number of sets of modal data, ω̂r, j and ϕ̂r, j are437

the experimental natural frequency and incomplete mode shape, respectively, for the r-th mode of the j-th data set, ωr438

and ϕr are the corresponding natural frequency and incomplete mode shape for the model with parameter assignments439

θ, and ε and δ are parameters that reflect the uncertainty in the experimentally measured natural frequencies and440

mode shapes, respectively. There are several noteworthy issues associated with the use of the modal measure of fit in441

Bayesian model updating. First, the updating results can be very sensitive to the weighting coefficients, ε2 and δ2, that442

express the relative importance of the modal frequency and partially described mode shape correlations to the objective443

function [39]. Second, direct matching of modes is required, which can be challenging with incompletely measured444

mode shapes [40]. Lastly, the measure of fit aggregates the model correlations and therefore does not ensure that each445

of the individual modal parameters of the identified modal are consistent with the experimental measurements within446

prescribed uncertainty bounds.447

Additional challenges associated with Bayesian model updating stem from the need to evaluate multidimensional448

integrals that can not be solved analytically. A favored approach, particularly for models with many parameters,449
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has been to leverage stochastic simulation methods, such as Metropolis-Hastings or Gibbs sampling, to develop the450

posterior probability density functions for the uncertain parameters. However, such approaches introduce several451

additional challenges. First, since the parameter space is evaluated by discrete sampling, the development of posterior452

joint probability distribution functions can be computationally intensive, particularly if either the size of the model453

or the uncertainty in the prior distributions is large. Second, the specification of the prior distributions influences the454

development and accuracy of the posterior probability distribution functions [41]. Transitional, or adaptive, methods455

have been introduced to address this later challenge by converging on the posterior distribution through intermediate456

probability distribution functions [42]. However, these methods introduce additional complexity and computational457

cost. Lastly, stochastic simulation methods are sensitive to user specified settings, such as the number of iterations458

before adaptation of the intermediate probability distribution functions, and can not guarantee complete exploration459

of the parameter search space and complete mapping of feasible solutions.460

A two degree of freedom mass spring model sourced from [39] is used to illustrate these limitations within461

Bayesian model updating approaches and further demonstrate advantages of the proposed methodology. Consistent462

with the case presented in the literature, the structural matrices for this model are taken as:463

M =
[
1 0
0 1

]
, K = 2000

[
θ1 + θ2 −θ2
−θ2 θ2

]
(14)

where θ1 and θ2 are uncertain stiffness parameters. Synthetic measurement data was generated for 15 sets of modal464

parameter estimates by generating Gaussian distributions with coefficient of variation of 0.01 around the two natural465

frequencies and mode shapes for the model specified with θ1 = θ2 = 1. For Bayesian model updating, an adap-466

tive Metropolis-Hastings Markov Chain Monte Carlo method was used to sample posterior probability distribution467

functions with a likelihood function incorporating the modal measure of fit function in Equation 13. For all cases468

described, a uniform prior distribution was assigned to the two uncertain parameters in the model over the range [0,3].469

Relative weighting of the natural frequency and mode shape terms in the modal measure of fit function was adjusted470

to yield three representative cases. The first two cases serve to illustrate the sensitivity of the Bayesian model updating471

results to the assignment of the relative weighting coefficients prescribed to the mode shape and natural frequency cor-472

relations in the modal measure of fit function. When the relative weighting is prescribed in a way that over-expresses473

the mode shape correlations relative to the natural frequency correlations, an under-determined problem is developed474

and the posterior distribution of the Markov Chain samples suggest non-uniqueness of the uncertain parameters (Fig-475

ure 10a). When the relative weighting is prescibed in a way that over-expresses the natural frequency correlations476

relative to the mode shape correlations, the posterior distribution of the Markov Chain samples suggest two alterna-477

tive solutions (Figure 10b). Only when the relative weighting is prescribed such that the natural frequency and mode478

shape correlations are balanced to express an appropriate degree of importance of each to the modal measure of fit479

is a posterior distribution uniquely generated around the two stiffness parameters used to develop the measurement480

data (10c). It should be noted that strategies for determining balanced weighting factors for Bayesian model updating481

have been developed [39], however these strategies require an additional layer of heuristic model updating on the rel-482

ative weighting assignments to assess and select the appropriate model class. Consequently, these approaches further483

increase the computational burden associated with probabilistic model updating.484

Constraint equations for the same two degree of freedom mass spring model were developed using the new485

methodology proposed by the authors. The standard deviations, σ, of the synthetic measurements of the natural486

frequencies and mode shapes were used to establish interval assignments about the mean of these modal parameters487

within the constraint equations. Nonlinear constraint satisfaction using interval arithmetic and contractor program-488

ming was then used to map all feasible solutions within a search space developed by bounding the parameters in489

the model using θ j ∈ [0, 3]. In order to generate solutions for non-unique cases analogous to those presented for490

Bayesian model updating, the synthetic measurement data provided in the constraint equations was first restricted to491

either the mode shapes (Figure 11a) or the natural frequencies (Figure 11b). In both cases, subpavings were gen-492

erated for interval uncertainties on the prescribed measurement components using confidence intervals of ±2σ, ±σ,493

and ± 1
2σ. In both cases, the nonlinear constraint satisfaction approach correctly identifies and maps the non-unique494

solutions in basins consistent with the Bayesian posterior distributions. However, unlike the samples of the posterior495

distributions produced by Bayesian model updating that require further statistical inference to estimate the probabili-496

ties associated with the parameter assignments, the nonlinear constraint satisfaction approach successfully propagates497

the measurement uncertainty through the inverse problem to completely and crisply map the associated confidence498
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a) b) c)

Figure 10: Samples of the posterior distribution obtained from Bayesian model updating of two degree of freedom model with uncertain stiffness
parameters: a) mode shapes over-expressed in the measure of fit; b) natural frequencies over-expressed in the measure of fit; c) balanced model
class

a) b) c)

Figure 11: Subpavings of feasible solution space for parameters in two degree of freedom model: a) using only the mode shape measurements in
the constraint equations; b) using only the natural frequency measurements in the constraint equations; c) using both the mode shape and natural
frequency measurements

in the identified feasible parameter assignments. Furthermore, it should be emphasized that these non-unique cases499

need to be intentionally generated by omitting measurement data in the constraint equations, whereas they can arise500

unintentionally within the Bayesian method if relative weighting coefficients are prescribed in an unbalanced man-501

ner. When the synthetic data prescribed in the constraint equations includes both the natural frequencies and mode502

shapes, the nonlinear constraint solver correctly identifies the stiffness parameters used to generate the modal param-503

eter data and encloses the confidence in the parameter estimates through the subpavings of the search space (Figure504

11c). Comparison with current probabilistic model updating approaches, illustrates the advantages of both being able505

to directly specify the measurement uncertainty and completely enclose the feasible parameter space associated with506

the uncertain measurements using the nonlinear constraint satisfaction approach. In the Bayesian approach, the modal507

measure of fit aggregates all of the model correlations, which can not guarantee that modal parameters of the identified508

models strictly adhere to prescribed uncertainty bounds for individual parameters. Furthermore, statistical inference509

of the posterior samples is required to estimate parameter confidence, as opposed to the new methodology that crisply510

encloses the confidence intervals.511

In terms of computational efficiency, the nonlinear constraint solver was able to map the feasible solution space to512

the nonlinear constraint satisfaction problem in a fraction of a second, while the Metropolis-Hastings Markov Chain513

Monte Carlo method used to perform Bayesian Model updating required several seconds to converge on the posterior514

distribution presented. It should be noted again that the computational time associated with the Bayesian method does515

not account for additional time required to select appropriate relative weighting factors. Since the nonlinear constraint516

satisfaction approach operates directly on the governing mechanics equations rather than objective functions that517

aggregate model correlations, potentially time consuming selection of model class is not required within the proposed518

methodology.519
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7. Conclusion520

A novel technique for structural identification through model updating has been presented by formulating the in-521

verse problem as a constraint satisfaction problem. The formulation structures a set of coupled, nonlinear constraint522

equations over a bounded search space and efficiently obtains a complete set of feasible solutions to the constraint523

equations using interval arithmetic and contractor programming. The use of interval arithmetic in the approach has524

been further leveraged to introduce relaxation of the constraint equations to accommodate uncertainties in the model525

and measurements. Through numerical verification as well as application to an experimental dataset, unique capabil-526

ities of this methodology for the model updating problem have been demonstrated.527

Foremost, the approach is capable of completely mapping feasible solutions to the structured inverse eigenvalue528

problem, which offers significant advantages over optimization and stochastic sampling techniques. An efficient529

process of progressive relaxation of the constraints equations to accommodate measurement uncertainties is used to530

identify the global optimal solution. Through further relaxation, the sensitivity of the parameter estimates to the531

measurement data can be revealed to quantify uncertainty in the parameter estimates associated with the conditioning532

of the problem as well as expose alternative solutions residing in local minima. Consequently, the approach provides533

a means of projecting uncertainty in the measurements to the parameter space and can permit future research to534

explore the incorporation of “human-in-the-loop” practitioner heuristics for the evaluation of alternative solutions to535

the global minimum. Furthermore, an additional unique capability of the approach is the demonstrated ability of536

the solver to completely enumerate the feasible solutions to ill-posed formulations of the model updating problem.537

Despite the uniqueness issues resulting from the limited measurement data used in the ill-posed form, results from the538

examples presented in this paper reveal the capability of this approach to exactly identify select uncertain parameters in539

substructures of the model. This capability may provide the foundation for developing novel vibration-based structural540

health monitoring strategies for condition assessment of local substructures with limited sensor deployments.541

Future work will be directed toward leveraging the capabilities offered by this approach to challenges in vibration-542

based damage detection. In addition, the exploration of specific contractors and design of contraction strategies beyond543

the default solver of the IBEX library offer the potential to enhance the performance of the methodology. Furthermore,544

the incorporation of model reduction strategies into the constraint equations may provide a means of improving the545

efficiency of the algorithm by eliminating the need to solve for unmeasured components of the eigenvectors. Lastly,546

the scalability of the proposed technique to larger structural models with more degrees of freedom will need to be547

investigated to extend the application to structures of greater complexity.548
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