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Background
Solutions to sectorial plate problems have been investigated since the early twentieth 
century. Today, besides being of academic interest, these solutions are useful for verify-
ing finite element analysis results, performing parametric studies, or assisting with pre-
liminary designs. Timoshenko and Woinowsky-Krieger (1959) presented solutions for 
sectorial plates fixed (clamped) along the circular boundary and simply supported along 
the (straight) radial edges. However, they acknowledged that sectorial plate solutions 
containing clamped or free radial edges must be solved using approximate methods. 
Williams (1952a, b) presented solutions showing the stress singularities that develop due 
to various boundary conditions for plates in bending and extension; these solutions were 
developed using eigenfunction expansions.

Barber (1979) investigated the deflections of annular sectorial plates for some problems 
with concentrated moments and forces on a plate with a straight edge. He also provided a 
solution for twisting moments applied at the vertex of an infinite sectorial plate. Lim and 
Wang (2000) developed solutions for annular Mindlin sectorial plates using the Kirchhoff 
solutions, and Boonchareon et al. (2013) revisited the William’s problem for plate bend-
ing, providing solutions for problems that were previously unsolved. Huang et al. (2016) 
solved the infinite sectorial plate problem subjected to tip loads consisting of two twisting 
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moments and a bending moment in a functionally graded plate, as well as concentrated 
forces in the plane of the plate; these solutions employed complex variable techniques.

Nadai (1925) provided particular solutions to a sectorial plate subjected to a tip twist-
ing moment and a tip bending moment. These solutions are applicable to a plate of 
infinite radial extent with free radial edges, implying that any additional boundary con-
ditions are located at a far distance from the plate’s tip. Carrier and Shaw (1950) applied 
an asymmetric eigenfunction expansion to Nadai’s particular solution for the tip twisting 
moment problem to account for fixed circumferential boundary conditions for a canti-
levered sectorial plate; they enforced the fixed boundary conditions in a relaxed (aver-
aged) manner. Kennedy et al. (2008) corrected mistakes in the presentation of Carrier 
and Shaw and compared their results to those from a finite element analysis; the agree-
ment was found to be very good. Similarly, Christy et al. (2013) used Nadai’s particular 
solution for a sectorial plate subjected to a tip bending moment and applied a symmet-
ric eigenfunction expansion for the fixed boundary conditions, similar to the procedure 
used by Carrier and Shaw (1950), to produce a closed-form deflection solution.

This paper presents the total solution for a cantilevered sectorial plate subjected to a 
tip concentrated force. However, the particular solution for this problem was not found 
in the literature; so it is first derived and presented in this paper. Then the particular 
solution is modified by a symmetric eigenfunction expansion and an “averaged” applica-
tion of the fixed boundary conditions to produce the closed-form deflection solution. 
The solution is subsequently compared to the results from a finite element analysis.

Results and discussion
The infinite sectorial plate shown in Fig. 1 is subjected to three different applied tip load-
ing conditions: a twisting moment Mt, a bending moment Mb, and a concentrated force 
P; the applied moments are observed to have the traditional units of force times length. 
The coordinate systems and the plate dimensions are also shown in the diagram. The 
origin of the Cartesian coordinate system is located at the tip of the plate on the plate’s 
neutral surface. A right-hand coordinate system is used, where the positive X-axis points 
to the right, bisecting the plate, the Y-axis is perpendicular to the X-axis, and the posi-
tive Z-axis points downward. The origin of the polar coordinate system is also located at 
the tip of the plate. The radial distance r ranges from 0 (at the tip) to infinity; if the plate 
were to have a finite length R, r would satisfy 0 ≤ r ≤ R. The circumferential coordinate θ 

–
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Fig. 1 Infinite sectorial plate subject to three applied tip loading conditions
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measures in-plane angles and ranges over −α ≤ θ ≤ + α, where 2α is the angular extent 
of the plate. Positive tip moments are shown by double headed arrows that follow the 
right hand rule and point along the positive X- and Y-axes. The positive concentrated 
force P acts in the direction of the positive Z-axis.

Existing particular solutions for tip twisting moment and tip bending moment

Nadai (1925) presented mixed coordinate solutions (i.e. a function of both Cartesian and 
polar coordinates) for an infinite sectorial plate subjected to a tip twisting moment and 
a tip bending moment. Equivalent equations, after being converted to polar coordinates, 
are presented below.

As presented in Kennedy et al. (2008), the particular solution for a sectorial plate sub-
jected to a tip twisting moment is

where

Similarly, Christy et al. (2013) presented the particular solution for a sectorial plate sub-
jected to a tip bending moment

where

In these equations w0i is the plate’s deflection in the Z-direction, where the first sub-
script 0 denotes the particular solution and the second subscript, t or b, denotes that 
the deflection is due to an applied twisting moment or bending moment, respectively. 
R is an arbitrary radial length, D is the plate’s flexural rigidity (D = Et3/[12(1 − ν2)]), ν 
and E are the Poisson’s ratio and Young’s modulus of the material, respectively, and t is 
the plate’s thickness. The similarities of Eqs.  (1) and (2) to Eqs.  (3) and (4) are readily 
observed. However, Eqs.  (1) and (2) represent an asymmetric solution with respect to 
the X-axis due to the applied twisting moment, and Eqs. (3) and (4) represent a symmet-
ric solution due to the applied bending moment.

Derivation of the particular solution for a tip concentrated force

To the authors’ knowledge, the particular solution for an infinite sectorial plate subjected 
to a tip concentrated force does not exist in the literature, so it is derived here. An infinite 
sectorial plate implies a self-similar problem, leading to a deflection solution of the form

(1)w0t = Ct

(

r ln
r

R
sin θ +

1+ v

2
rθ cos θ

)

(2)Ct =
−2Mt

D[(1− v)2 sin(2α)+ 2α(1− v)(3+ v)]

(3)w0b = Cb

(

r ln
r

R
cos θ −

1+ v

2
rθ sin θ

)

(4)Cb =
−2Mb

D[(1− v)2 sin(2α)− 2α(1− v)(3+ v)]

(5)w0 = rn · f (θ)
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Equilibrium requires that n = 2, since the shear force per length along any arc must be 
proportional to r−1. If θ is restricted to the range −α ≤ θ ≤ + α, the solution to the bihar-
monic equation gives the deflection solution

The general solution to the biharmonic equation is given in Timoshenko and Goodier 
(1987). The relationship between the two constants, B and C, is obtained by applying the 
free radial edge condition Mθ(r, α) = 0, where

is generally an internal moment that induces normal stresses in the plate in the θ 
direction; Mθ(r, θ) is a “moment intensity” with units of moment per length (N m/m). 
Thus, substituting Eq. (6) and its derivatives into Eq. (7), evaluated at θ = +α, gives the 
expression

A second equation relating P and C is obtained by using the expression for the internal 
twisting moment (a moment intensity with N m/m units)

When Eq. (6) and its derivatives are substituted into Eq. (9) and evaluated at θ = + α, it 
produces

The twisting moment intensity along the plate’s edge is observed to remain constant for 
all values of r. As shown in Fig. 2, the twisting moment intensity Mrα times the length dr 
produces a moment in force times length units that can be replaced by equivalent couple 
forces F separated by the same distance dr; thus Fdr = Mrαdr, which leads to

The two corner forces F toward the tip of the plate, from two different twisting moment 
couples (see Fig. 2), are set equal the applied concentrated force P to give

Substituting Eq. (11) into Eq. (12) shows that

Next, substituting Eq. (10) into Eq. (13) and rearranging gives the expression for C

(6)w0 = r2(B+ C cos(2θ))

(7)Mθ (r, θ) = −D

[

1

r

∂w(r, θ)

∂r
+

1

r2
∂2w(r, θ)

∂θ2
+ ν

∂2w(r, θ)

∂r2

]

(8)B =
C cos(2α)(1− v)

(1+ v)

(9)Mrθ (r, θ) = −D(1− v)

[

1

r

∂2w(r, θ)

∂r∂θ
−

1

r2
∂w(r, θ)

∂θ

]

(10)Mrα(r,α) = 2(1− v)DC sin(2α)

(11)F = Mrα

(12)P = 2F

(13)P = 2Mrα

(14)C =
P

4D(1− v) sin(2α)
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Substituting Eq. (14) into Eq. (8) gives

Finally, substituting Eqs. (14) and (15) into Eq. (6), the particular solution for a sectorial 
plate subjected to a tip concentrated force P is given by

where the first subscript 0 denotes that this is a particular solution and the second sub-
script p denotes that the deflection is due to an applied tip concentrated force P.

Solution for cantilevered sectorial plates

An eigenfunction expansion is applied to account for the fixed boundary conditions at 
r = R for a finite sectorial plate. Noting that the tip concentrated force P will cause a 
symmetric deflection of the plate about the X-axis, only the cosine terms of the expan-
sion are needed. Christy et  al. (2013) used the eigenfunction expansion for a similar 
symmetric solution

This satisfies the free radial edge conditions while allowing adjustment of the particular 
solution (infinite plate solution) to satisfy the fixed boundary conditions. Each wj cor-
responds to a deflection term that contributes to the total deflection, and each nj is the 
corresponding eigenvalue for the respective term of the equation. The constants bj are 
obtained by imposing the boundary condition Mθ(r, α) = 0 to produce

(15)B =
P cos(2α)

4D(1+ v) sin(2α)

(16)w0p =
Pr2

4D sin(2α)

(

cos(2α)

(1+ v)
+

cos(2θ)

(1− v)

)

(17)wj(r, θ) =
( r

R

)nj[
cos(njθ) + bj cos((nj − 2)θ)

]

Mrα Mrα

P F

F
F

F

dr
dr

Fig. 2 Corner forces near plate tip created by twisting moment
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Imposing the boundary condition Vθ(r, α) = 0, where Vθ(r, α) is the shear force intensity 
(N/m units) along a radial edge, gives the characteristic equation for the eigenvalues nj

After the eigenvalues nj and constants bj are found, the total deflection equation is given 
by

where w0 is the particular solution and only the constants aj remain to be determined by 
applying the boundary conditions at the fixed support.

Equation (20) indicates that an infinite number of terms are required for the total solu-
tion. However, most practical applications will likely require only three or four terms. 
For example, Christy et  al. (2013) and Kennedy et  al. (2008) have shown that Carrier 
and Shaw’s (1950) technique of “averaging” the boundary conditions at the fixed support 
produces a very accurate total solution using only the first four terms of Eq.  (20). The 
constants aj are found by applying

and

Equations (21) and (22) permit only two constants aj to be calculated for two terms in 
the expansion within the summation of Eq. (20). If more terms (and more constants aj) 
are desired, then boundary conditions of zero deflection or zero slope can be applied at 
specific points along the plate’s fixed edge.

Example

A finite cantilevered sectorial plate, with the geometric and material properties and the 
loading values given in Table 1, is independently subjected to the three tip loading con-
ditions, as shown in Fig. 1.

Table 2 displays the three eigenvalues nj and the corresponding bj and aj constants of 
the eigenfunction expansions for each loading condition for j = 1, 2, 3. The tip bending 
moment and the tip concentrated force solutions both require eigenfunction expansions 
containing cosines, Eq. (17), because both loadings cause symmetric deflection solutions 
with respect to the X-axis. The tip twisting moment, however, produces an asymmet-
ric solution with respect to the X-axis and requires sines in place of the cosines in the 

(18)bj =
nj(1− v) cos(njα)

[4 − nj(1− v)] cos((nj − 2)α)

(19)nj(1− v) sin
(

njα
)

+
(

4 + (1− v)
(

nj − 2
))

bj sin
((

nj − 2
)

α
)

= 0

(20)w(r, θ) = w0(r, θ)+

∞
∑

j=1

ajwj(r, θ)

(21)

α
∫

0

w(R, θ)dθ = 0

(22)

α
∫

0

∂w(R, θ)

∂r
dθ = 0
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eigenfunction expansion (Kennedy et  al. 2008). Table 2 also shows that both symmet-
ric solutions produce identical values for the eigenvalues nj and constants bj; it is only 
the constants aj resulting from the particular solutions that are different for the specific 
loading case. On the other hand, the asymmetric solution corresponding to the twisting 
moment produces different eigenvalues nj and constants bj when compared to the sym-
metric solutions; further, the first eigenvalue n1 is now observed to equal unity not zero. 
For each loading case, Eqs.  (21) and (22), along with the specific boundary condition 
w(R, α) = 0, are applied to produce three constants aj to be used in the eigenfunction 
expansion.

Focusing on the total solution for the plate subjected to the tip concentrated force, the 
constants in the first three rows of Table 2 are substituted into Eq. (17) to provide the 
first three terms of the eigenfunction expansion, thus

Finally, the total solution is given by substituting the constants aj from Table 2, Eqs. (23)–
(25), and Eq. (16) with the values from Table 1 into

(23)w1p(r, θ) = 1

(24)w2p(r, θ) =

(

4

3+ 0.33

)

r

0.8
cos θ

(25)w3p(r, θ) =
( r

0.8

)7.515

[cos (7.515θ)− 0.731 cos (5.515θ)]

(26)wp(r, θ) = w0p(r, θ)+ a1w1p(r, θ)+ a2w2p(r, θ)+ a3w3p(r, θ)

Table 1 Example constants

R 800 mm (31.5 in.)

α 0.2 rad (11.44°)

t 6.35 mm (0.25 in.)

E 70 × 103 MPa (10 × 106 psi)

ν 0.33

P 4.45 N (1 lb)

Mb 110 N mm (1 lb in.)

Mt 110 N mm (1 lb in.)

Table 2 Example coefficients

Loading j nj bj aj

P 1 0.000 0.000 9.222 × 10−2

2 1.000 0.201 −1.555 × 10−1

3 7.515 −0.731 −2.796 × 10−3

Mb 1 0.000 0.000 5.930 × 10−3

2 1.000 0.201 −4.920 × 10−3

3 7.515 −0.731 −8.140 × 10−5

Mt 1 1.000 −0.201 1.826 × 10−3

2 11.171 −1.753 −7.722 × 10−5

3 13.409 −1.056 1.176 × 10−5
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where the subscript p in Eqs. (23)–(26) denotes that the deflection terms are for a plate 
subjected to a tip concentrated force P. It is noted that an analogous procedure is fol-
lowed for the total solutions for the other loadings.

The results of the total closed-form solution for the plate under a tip concentrated 
force were compared to those from a finite element analysis. An ANSYS model using 625 
SHELL93 elements was created for this loading; Kennedy et al. (2008) and Christy et al. 
(2013) describe the ANSYS model in more detail. Figure 3 is an overlay plot comparing 
the closed-form deflections to the numerical (finite element) deflections along the edge 
of the plate θ = +α. Each curve is normalized by dividing it by the maximum closed-
form deflection of 2.34231 mm (9.22167 × 10−2 in.), which occurs at the tip of the plate. 
The radial coordinate on the abscissa is normalized by dividing it by the plate’s radius R. 
The two solutions are in near-perfect agreement. Table 3 contains normalized closed-
form and numerical deflection values to five significant figures along the edge of the 
plate θ = +α; the deflections are normalized by the maximum closed-form deflection. 

Figure 4 shows the percent error between the two curves plotted in Fig. 3. The percent 
error is computed by

(27)%Error =
(Closed-form deflection)− (Numerical deflection)

Maximum closed-form deflection
× 100%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0

w/
w

m
ax

r/R 

Closed-form
Numerical

Fig. 3 Closed-form and numerical deflections at θ = +α

Table 3 Closed-form and numerical deflections at θ = +α

Normalized  
position (r/R)

Normalized closed-form  
deflection

Normalized numerical 
deflection

0.0 1.00000 × 100 1.00078 × 100

0.1 8.11252 × 10−1 8.11479 × 10−1

0.2 6.42049 × 10−1 6.41955 × 10−1

0.3 4.92393 × 10−1 4.92091 × 10−1

0.4 3.62288 × 10−1 3.61865 × 10−1

0.5 2.51757 × 10−1 2.51288 × 10−1

0.6 1.60864 × 10−1 1.60426 × 10−1

0.7 8.97613 × 10−2 8.94631 × 10−2

0.8 3.87709 × 10−2 3.87370 × 10−2

0.9 8.49806 × 10−3 8.84308 × 10−3

1.0 −1.23480 × 10−9 0.00000 × 100
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where the difference in the deflections is expressed as a fraction of the maximum closed-
form deflection. The maximum error of 0.08 % occurs at the plate’s tip, with the remain-
ing error along the plate’s edge bounded by ±0.05 %.

Figure  5 contains plots of the normalized deflections along the arc r  =  R/2. The 
numerical solution is slightly stiffer than the closed-form solution; however, the deflec-
tions show similar curvature along the arc traversing from −α to +α. Table 4 contains 
normalized closed-form and numerical deflection values to five significant figures along 
the arc r = R/2; the deflections in this table are also normalized by the maximum closed-
form deflection. Figure 6 shows the percent error of the deflections presented in Fig. 5. 
The error is symmetric about the plate’s bisector (θ = 0) with a maximum error <0.05 %.

Figure  7 contains plots of the resulting closed-form deflection and slope along the 
fixed boundary. The normalized support deflection Ws* is obtained by dividing the sup-
port deflection by the maximum closed-form deflection wmax. The normalized slope at 
the support θs* is obtained by dividing the support slope by the ratio of the maximum 
closed-form deflection to the plate’s radial length wmax/R. The true boundary condi-
tions are not satisfied exactly, as the curves are observed to oscillate about the exact zero 
deflection and slope boundary conditions. However, these deviations from zero are very 
small, indicating that the “averaged” boundary conditions [Eqs. (21) and (22)] provide a 
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Fig. 5 Closed-form and numerical deflections at r = R/2
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sufficiently accurate solution for most practical applications. Finally, it is observed that 
the boundary condition w(R, α) = 0, applied at a single point, ensures that the deflection 
is identically zero at θ = +α and −α.

Table 4 Closed-form and numerical deflections at r = R/2

Normalized  
position (θ/α)

Normalized closed-form  
deflection

Normalized numerical 
deflection

1.00 2.51757 × 10−1 2.51288 × 10−1

0.92 2.50769 × 10−1 2.50302 × 10−1

0.84 2.49868 × 10−1 2.49402 × 10−1

0.76 2.49051 × 10−1 2.48588 × 10−1

0.68 2.48319 × 10−1 2.47862 × 10−1

0.60 2.47670 × 10−1 2.47211 × 10−1

0.52 2.47104 × 10−1 2.46647 × 10−1

0.44 2.46620 × 10−1 2.46170 × 10−1

0.36 2.46218 × 10−1 2.45769 × 10−1

0.28 2.45897 × 10−1 2.45443 × 10−1

0.20 2.45656 × 10−1 2.45205 × 10−1

0.12 2.45496 × 10−1 2.45053 × 10−1

0.04 2.45415 × 10−1 2.44966 × 10−1

−0.04 2.45415 × 10−1 2.44966 × 10−1

−0.12 2.45496 × 10−1 2.45053 × 10−1

−0.20 2.45656 × 10−1 2.45205 × 10−1

−0.28 2.45897 × 10−1 2.45443 × 10−1

−0.36 2.46218 × 10−1 2.45769 × 10−1

−0.44 2.46620 × 10−1 2.46170 × 10−1

−0.52 2.47104 × 10−1 2.46647 × 10−1

−0.60 2.47670 × 10−1 2.47211 × 10−1

−0.68 2.48319 × 10−1 2.47862 × 10−1

−0.76 2.49051 × 10−1 2.48588 × 10−1

−0.84 2.49868 × 10−1 2.49402 × 10−1

−0.92 2.50769 × 10−1 2.50302 × 10−1

−1.00 2.51757 × 10−1 2.51288 × 10−1
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Fig. 6 Percent error of plate deflections at r = R/2
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Conclusions
A closed-form solution for a finite cantilevered sectorial plate subjected to a tip con-
centrated force is presented. Since the particular solution was not found in the litera-
ture, it is derived in this paper. A symmetric eigenfunction expansion is used to augment 
the particular solution to account for the fixed boundary conditions at the circumfer-
ential support. Deflections from the total closed-from solution are found to be in excel-
lent agreement with deflection results from a finite element analysis; the error is always 
within 0.08 % for the given example. Finally, the total closed-form solutions for a cantile-
vered sectorial plate subjected to independent applications of a tip concentrated force, a 
tip bending moment, and a tip twisting moment, are compiled.
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